Evaluation of Approaches for Most Frequent Sense Identification in Russian

  • Natalia LoukachevitchEmail author
  • Nikolai Mischenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11179)


In this paper, we compare several approaches for determining the most frequent senses of ambiguous words for Russian. We compare several approaches (frequency-based, topic models, information-retrieval and embedding-based) and consider two representation forms of information about multiword expressions described in RuThes. We found that the information-retrieval approach is better than the method based on probabilistic topic models. The best results are obtained with the application of distributional vector representations with thesaurus path weighing.


Lexical ambiguity Most frequent sense Thesaurus 


  1. 1.
    Agirre, E., Soroa, A.: SemEval-2007 task 02: evaluating word sense induction and discrimination systems. In: Proceedings of the 4th International Workshop on Semantic Evaluations, pp. 7–12 (2007)Google Scholar
  2. 2.
    Bhingardive, S., Singh, D., Murthy, R.: Unsupervised most frequent sense detection using word embeddings. In: Proceedings of NAACL-2015 (2015)Google Scholar
  3. 3.
    Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)CrossRefGoogle Scholar
  4. 4.
    Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606 (2016)
  5. 5.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  6. 6.
    Kobritsov, B., Lyashevskaya, O., Shemanayeva, O.: Surface filters for solving semantic homonymy in the textual case. In: Proceedings of International Conference on Dialogue-2005 (2005)Google Scholar
  7. 7.
    Koeling, R., McCarthy, D., Carroll, J.: Domain-specific sense distributions and predominant sense acquisition. In: Proceedings of EMNLP-2005, pp. 419–426 (2005)Google Scholar
  8. 8.
    Landes, S., Leacock, C., Tengi, R.I.: Building semantic concordances. WordNet: Electron. Lexical Database 199(216), 199–216 (1998)Google Scholar
  9. 9.
    Lashevskaja, O., Mitrofanova, O.: Disambiguation of taxonomy markers in context: Russian nouns. In: Proceedings of the 17th Nordic Conference of Computational Linguistics (NODALIDA 2009), pp. 111–117 (2009)Google Scholar
  10. 10.
    Lau, J.H., Cook, P., McCarthy, D., Newman, D., Baldwin, T.: Word sense induction for novel sense detection. In: Proceedings of the EACL-2012, pp. 591–601. Association for Computational Linguistics (2012)Google Scholar
  11. 11.
    Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of ACL-1998, pp. 768–774. Association for Computational Linguistics (1998)Google Scholar
  12. 12.
    Lopukhin, K., Iomdin, B., Lopukhina, A.: Word sense induction for Russian: deep study and comparison with dictionaries. In: Proceedings of International Conference on Dialogue-2017, vol. 1, pp. 121–134 (2017)Google Scholar
  13. 13.
    Lopukhin, K., Lopukhina, A.: Automated word sense frequency estimation for Russian nouns. In: Quantitative Approaches to the Russian Language, pp. 89–104. Routledge (2017)Google Scholar
  14. 14.
    Lopukhina, A., Lopukhin, K.: Word sense frequency estimation for Russian: verbs, adjectives, and different dictionaries. In: Proceedings of eLex 2017 Conference, pp. 267–280 (2017)Google Scholar
  15. 15.
    Loukachevitch, N., Chetviorkin, I.: Determining the most frequent senses using Russian linguistic ontology RuThes. In: Proceedings of Workshop on Semantic Resources and Semantic Annotation at NODALIDA 2015, pp. 21–27 (2015)Google Scholar
  16. 16.
    Loukachevitch, N., Chuiko, D.: Automatic resolution lexical ambiguity on basis of thesaurus knowledge, pp. 108–117 (2007)Google Scholar
  17. 17.
    Loukachevitch, N., Dobrov, B., Chetviorkin, I.: RuThes-Lite, a publicly available version of thesaurus of Russian language RuThes. In: Proceedings of International Conference on Dialogue-2014, vol. 2014 (2014)Google Scholar
  18. 18.
    Loukachevitch, N., Shevelev, A., Mozharova, V.: Testing features and methods in Russian paraphrasing task. In: Proceedings of International Conference on Dialog-2017, pp. 135–145 (2017)Google Scholar
  19. 19.
    McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Finding predominant word senses in untagged text (2004)Google Scholar
  20. 20.
    McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Unsupervised acquisition of predominant word senses. Comput. Linguist. 33(4), 553–590 (2007)CrossRefGoogle Scholar
  21. 21.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  22. 22.
    Mitra, S., Mitra, R., Riedl, M., Biemann, C., Mukherjee, A., Goyal, P.: That’s sick dude!: automatic identification of word sense change across different timescales. arXiv preprint arXiv:1405.4392 (2014)
  23. 23.
    Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR) 41(2), 10 (2009)CrossRefGoogle Scholar
  24. 24.
    Navigli, R., Jurgens, D., Vannella, D.: SemEval-2013 task 12: multilingual word sense disambiguation. In: Second Joint Conference on Lexical and Computational Semantics SemEval 2013, vol. 2, pp. 222–231 (2013)Google Scholar
  25. 25.
    Panchenko, A., et al.: RUSSE’2018: a shared task on word sense induction for the Russian language. In: Proceedings of International Conference Dialogue-2018, pp. 547–564 (2018)Google Scholar
  26. 26.
    Ustalov, D., Panchenko, A., Biemann, C.: Watset: automatic induction of synsets from a graph of synonyms. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pp. 1579–1590 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Tatarstan Academy of SciencesKazanRussia

Personalised recommendations