Brain-Inspired Robust Delineation Operator

  • Nicola StrisciuglioEmail author
  • George Azzopardi
  • Nicolai Petkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11131)


In this paper we present a novel filter, based on the existing COSFIRE filter, for the delineation of patterns of interest. It includes a mechanism of push-pull inhibition that improves robustness to noise in terms of spurious texture. Push-pull inhibition is a phenomenon that is observed in neurons in area V1 of the visual cortex, which suppresses the response of certain simple cells for stimuli of preferred orientation but of non-preferred contrast. This type of inhibition allows for sharper detection of the patterns of interest and improves the quality of delineation especially in images with spurious texture.

We performed experiments on images from different applications, namely the detection of rose stems for automatic gardening, the delineation of cracks in pavements and road surfaces, and the segmentation of blood vessels in retinal images. Push-pull inhibition helped to improve results considerably in all applications.


COSFIRE filter Delineation push-pull inhibition 



This research received funding from the EU H2020 research and innovation framework (grant no. 688007, TrimBot2020).


  1. 1.
    Zhang, L., Zhang, Y., Wang, M., Li, Y.: Adaptive river segmentation in sar images. J. Electron. 26(4), 438–442 (2009)Google Scholar
  2. 2.
    Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE Trans. Pattern Anal. Mach. Intell 27(10), 1568–1579 (2005)zbMATHCrossRefGoogle Scholar
  3. 3.
    Strisciuglio, N., Petkov, N.: Delineation of line patterns in images using B-COSFIRE filters. In: IWOBI, pp. 1–6 (2017)Google Scholar
  4. 4.
    Azzopardi, G., Petkov, N.: A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model. Biol. Cybern. 106(3), 177–189 (2012)CrossRefGoogle Scholar
  5. 5.
    Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1), 46–57 (2015)CrossRefGoogle Scholar
  6. 6.
    Strisciuglio, N., Azzopardi, G., Vento, M., Petkov, N.: Unsupervised delineation of the vessel tree in retinal fundus images. In: VIPIMAGE, pp. 149–155 (2015)Google Scholar
  7. 7.
    Strisciuglio, N., Azzopardi, G., Vento, M., Petkov, N.: Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters. Mach. Vis. Appl. 27, 1–13 (2016)CrossRefGoogle Scholar
  8. 8.
    Bibiloni, P., González-Hidalgo, M., Massanet, S.: A survey on curvilinear object segmentation in multiple applications. Pattern Recognit. 60, 949–970 (2016)CrossRefGoogle Scholar
  9. 9.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). Scholar
  10. 10.
    Al-Rawi, M., Qutaishat, M., Arrar, M.: An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37(2), 262–267 (2007)CrossRefGoogle Scholar
  11. 11.
    Oliveira, W.S., Teixeira, J.V., Ren, T.I., Cavalcanti, G.D.C., Sijbers, J.: Unsupervised retinal vessel segmentation using combined filters. PLoS ONE 11(2), 1–21 (2016)Google Scholar
  12. 12.
    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  13. 13.
    Martinez-Pérez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Image Anal. 11(1), 47–61 (2007)CrossRefGoogle Scholar
  14. 14.
    Lam, B., Gao, Y., Liew, A.C.: General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans. Med. Imag. 29(7), 1369–1381 (2010)CrossRefGoogle Scholar
  15. 15.
    Merveille, O., Talbot, H., Najman, L., Passat, N.: Curvilinear structure analysis by ranking the orientation responses of path operators. IEEE Trans. Pattern Anal. Mach. Intell 40(2), 304–317 (2018)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lafarge, F., Gimel’Farb G.G., Descombes, X.: Geometric feature extraction by a multimarked point process. IEEE Trans. Pattern Anal. Mach. Intell 32(9), 1597–1609 (2010)CrossRefGoogle Scholar
  17. 17.
    Verdié, Y., Lafarge, F.: Efficient Monte Carlo sampler for detecting parametric objects in large scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 539–552. Springer, Heidelberg (2012). Scholar
  18. 18.
    Türetken, E., Benmansour, F., Andres, B., Gowacki, P., Pfister, H., Fua, P.: Reconstructing curvilinear networks using path classifiers and integer programming. IEEE Trans. Pattern Anal. Mach. Intell. 38(12), 2515–2530 (2016)CrossRefGoogle Scholar
  19. 19.
    Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., Abramoff, M.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Proceedings of the SPIE - The International Society for Optical Engineering, pp. 648–656 (2004)Google Scholar
  20. 20.
    Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag. 25(9), 1214–1222 (2006)CrossRefGoogle Scholar
  21. 21.
    Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)CrossRefGoogle Scholar
  22. 22.
    Marin, D., Aquino, A., Emilio Gegundez-Arias, M., Manuel Bravo, J.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imag. 30(1), 146–158 (2011)CrossRefGoogle Scholar
  23. 23.
    Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imag. 35(11), 2369–2380 (2016)CrossRefGoogle Scholar
  24. 24.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  25. 25.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2017)Google Scholar
  26. 26.
    Taylor, M.M., Sedigh-Sarvestani, M., Vigeland, L., Palmer, L.A., Contreras, D.: Inhibition in simple cell receptive fields is broad and off-subregion biased. J. Neurosci. 38(3), 595–612 (2018)CrossRefGoogle Scholar
  27. 27.
    Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: Cracktree: automatic crack detection from pavement images. Pattern Recognit. Lett. 33(3), 227–238 (2012)CrossRefGoogle Scholar
  28. 28.
    Strisciuglio, N., et al.: Trimbot2020: an outdoor robot for automatic gardening. In: 50th International Symposium on Robotics (2018)Google Scholar
  29. 29.
    Gegundez-Arias, M.E., Aquino, A., Bravo, J.M., Marin, D.: A function for quality evaluation of retinal vessel segmentations. IEEE Trans. Med. Imag. 31(2), 231–239 (2012)CrossRefGoogle Scholar
  30. 30.
    Strisciuglio, N., Azzopardi, G., Petkov, N.: Detection of curved lines with B-COSFIRE filters: a case study on crack delineation. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10424, pp. 108–120. Springer, Cham (2017). Scholar
  31. 31.
    Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)CrossRefGoogle Scholar
  32. 32.
    Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Med. Imag. 10(7), 1010–1019 (2001)zbMATHCrossRefGoogle Scholar
  33. 33.
    Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64(1), 16–27 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicola Strisciuglio
    • 1
    Email author
  • George Azzopardi
    • 1
  • Nicolai Petkov
    • 1
  1. 1.Bernoulli InstituteUniversity of GroningenGroningenThe Netherlands

Personalised recommendations