Agarwal, S., et al.: Building Rome in a day. Commun. ACM 54(10), 105–112 (2011)
CrossRef
Google Scholar
Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. IJCV 74(1), 59–73 (2007)
CrossRef
Google Scholar
Lynen, S., Sattler, T., Bosse, M., Hesch, J.A., Pollefeys, M., Siegwart, R.: Get out of my lab: large-scale, real-time visual-inertial localization. In: Robotics: Science and Systems (2015)
Google Scholar
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)
MathSciNet
CrossRef
Google Scholar
Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: CVPR (2012)
Google Scholar
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
CrossRef
Google Scholar
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: ICCV (2011)
Google Scholar
Trzcinski, T., Christoudias, M., Lepetit, V., Fua, P.: Boosting binary keypoint descriptors. In: CVPR (2013)
Google Scholar
Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: ICCV (2015)
Google Scholar
Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28
CrossRef
Google Scholar
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IROS (2012)
Google Scholar
Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: MatchNet: unifying feature and metric learning for patch-based matching. In: CVPR (2015)
Google Scholar
Loquercio, A., Dymczyk, M., Zeisl, B., Lynen, S., Gilitschenski, I., Siegwart, R.: Efficient descriptor learning for large scale localization. In: ICRA (2017)
Google Scholar
Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, ICML 2016, vol. 48, pp. 2014–2023. JMLR.org (2016)
Google Scholar
Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, USA, pp. 3844–3852. Curran Associates, Inc. (2016)
Google Scholar
Muja, M., Lowe, D.G.: Fast matching of binary features. In: Computer and Robot Vision (CRV) (2012)
Google Scholar
Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. TPAMI 36(11), 2227–2240 (2014)
CrossRef
Google Scholar
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
MathSciNet
CrossRef
Google Scholar
Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. TPAMI 35(8), 2022–2038 (2013)
CrossRef
Google Scholar
Bian, J., Lin, W.Y., Matsushita, Y., Yeung, S.K., Nguyen, T.D., Cheng, M.M.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In: CVPR (2017)
Google Scholar
Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: NIPS (1993)
Google Scholar
Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)
Google Scholar
Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 971–980. Curran Associates, Inc. (2017)
Google Scholar
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
CrossRef
Google Scholar
https://opencv.org/
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34
CrossRef
Google Scholar
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)
Google Scholar
Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: ICCV (2013)
Google Scholar
Lin, W.-Y.D., Cheng, M.-M., Lu, J., Yang, H., Do, M.N., Torr, P.: Bilateral functions for global motion modeling. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 341–356. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_23
CrossRef
Google Scholar
Lipman, Y., Yagev, S., Poranne, R., Jacobs, D.W., Basri, R.: Feature matching with bounded distortion. ACM Trans. Graph. 33(3), 26:1–26:14 (2014)
CrossRef
Google Scholar