Skip to main content

Internet of Things for Advanced Targeted Nanomedical Applications

  • Chapter
  • First Online:
Advanced Targeted Nanomedicine

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

The fundamental idea behind nanomedicine is to improve the efficiency of medical and healthcare systems using nanotechnology concepts, devices, tools, technologies and techniques. On the other hand, another nanotechnology offshoot, molecular communication engineering, considers the design and development of nano-scale devices and machines that can communicate by means of biochemical information exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chude-Okonkwo UA, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: a survey. IEEE Commun Surv Tutorials 19(4):3046–3096

    Article  Google Scholar 

  2. Dressler F, Fischer S (2015) Connecting in-body nano communication with body area networks: challenges and opportunities of the Internet of nano things. Nano Commun Netw 6(2):29–38

    Article  Google Scholar 

  3. Atzori L, Iera A, Morabito G (2010) The Internet of things: a survey. Comput Netw 54(15):2787–2805

    Article  Google Scholar 

  4. Li S, Da Xu L, Zhao S (2015) The Internet of things: a survey. Inf Syst Front 17(2):243–259

    Article  Google Scholar 

  5. Miorandi D et al (2012) Internet of things: vision, applications and research challenges. Ad Hoc Netw 10:1497–1516

    Article  Google Scholar 

  6. Akyildiz IF, Jornet JM (2010) The Internet of nano-things. IEEE Wirel Commun 17(6):58–63

    Article  Google Scholar 

  7. Akyildiz IF, Pierobon M, Balasubramaniam S, Koucheryavy Y (2015) The Internet of bio-nano things. IEEE Commun Mag 53(3):32–40

    Article  Google Scholar 

  8. Chude-Okonkwo UA, Malekian R, Maharaj BT, Chude CC (2015) Bio-inspired approach for eliminating redundant nanodevices in Internet of Bio-Nano Things. In: IEEE Globecom Workshops (GC Wkshps), 6 Dec, pp 1–6

    Google Scholar 

  9. Chude-Okonkwo UA, Malekian R, Maharaj BT (2016) Biologically inspired bio-cyber interface architecture and model for Internet of bio-nanothings applications. IEEE Trans Commun 64(8):3444–3455

    Article  Google Scholar 

  10. Sethi P, Sarangi SR (2017) Internet of things: architectures, protocols, and applications. J Electr Comput Eng 2017:1–25

    Article  Google Scholar 

  11. Balasubramaniam S, Kangasharju J (2013) Realizing the Internet of nano things: challenges, solutions, and applications. Computer 46(2):62–68

    Article  Google Scholar 

  12. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase: a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2(9):669–677

    Article  CAS  Google Scholar 

  13. Biedermann J, Ullrich A, Schöneberg J, Noé F (2015) ReaDDyMM: fast interacting particle reaction-diffusion simulations using graphical processing units. Biophys J 108(3):457–461

    Article  CAS  Google Scholar 

  14. Shamir M et al (2016) Snapshot: timescales in cell biology. Cell 164(6):1302

    Article  CAS  Google Scholar 

  15. Perkins JR et al (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18(10):1233–1243

    Article  CAS  Google Scholar 

  16. Sanders CR (2010) Biomolecular ligand-receptor binding studies: theory, practice, and analysis. Vanderbilt University, pp 1–42

    Google Scholar 

  17. Sundmaeker H, Guillemin P, Friess P, Woelfflé S (2010) Vision and challenges for realising the internet of things. Cluster Eur Res Projects Internet Things, Eur Commision 3(3):34–36

    Google Scholar 

  18. Chen S, Xu H, Liu D, Hu B, Wang H (2014) A vision of IoT: applications, challenges, and opportunities with China perspective. IEEE Internet Things J 1(4):349–359

    Article  Google Scholar 

  19. Roberts JR, Park J, Helton K, Wisniewski N, McShane MJ (2012) Biofouling of polymer hydrogel materials and its effect on diffusion and enzyme-based luminescent glucose sensor functional characteristics. J Diabetes Sci Technol 6(6):1267–1275

    Article  Google Scholar 

  20. Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, Van Duyne RP (2005) Towards advanced chemical and biological nanosensors: an overview. Talanta 67:438–448

    Article  CAS  Google Scholar 

  21. Nakano T, Kobayashi S, Suda T, Okaie Y, Hiraoka Y, Haraguchi T (2014) Externally controllable molecular communication. IEEE J Sel Areas Commun 32:2417–2431

    Article  Google Scholar 

  22. Kuscu M, Akan OB (2016) The Internet of molecular things based on FRET. IEEE Internet Things J 3:4–17

    Article  Google Scholar 

  23. Pottie GJ, Kaiser WJ (2000) Wireless integrated network sensors. Commun ACM 43(5):51–58

    Article  Google Scholar 

  24. Xu Y, Qi H (2004) Distributed computing paradigms for collaborative signal and information processing in sensor networks. J Parallel Distrib Comput 64(8):945–959

    Article  Google Scholar 

  25. Shih PJ, Lee CH, Yeh PC, Chen KC (2013) Channel codes for reliability enhancement in molecular communication. IEEE J Sel Areas Commun 31(12):857–867

    Article  Google Scholar 

  26. Lu Y, Higgins MD, Leeson MS (2015) Comparison of channel coding schemes for molecular communications systems. IEEE Trans Commun 63(11):3991–4001

    Article  Google Scholar 

  27. Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Sur Tutorials 17(4):2317–2346

    Article  Google Scholar 

  28. IEEE P1906.1—Recommended practice for nanoscale and molecular communication framework

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malekian .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chude-Okonkwo, U., Malekian, R., Maharaj, B.T. (2019). Internet of Things for Advanced Targeted Nanomedical Applications. In: Advanced Targeted Nanomedicine. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-11003-1_6

Download citation

Publish with us

Policies and ethics