Skip to main content

Understanding Delivery Routes and Operational Environments of Nanosystems

  • Chapter
  • First Online:

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

In a typical ATN solution, nanoparticles are delivered to targeted locations in the body where they are meant to operate. Unless the nanoparticles are delivered to the targeted location (nanonetwork site), no effective delivery of the ATN solution can take place. The journey of the ATN nanoparticles from the points of administration into the body system to the targeted location is a complex one and requires accurate understanding. Indeed, the delivery of the ideals and promises of nanomedicine in general, and ATN in particular, crucially depends on the know-how and accuracy of conveying nanoparticles to the desired destinations in the body.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7:606–618

    Article  CAS  Google Scholar 

  2. Yildirimer L, Thanh NT, Loizidou M, Seifalian AM (2011) Toxicology and clinical potential of nanoparticles. Nano Today 6:585–607

    Article  CAS  Google Scholar 

  3. Lin CH, Chen CH, Lin ZC, Fang JY (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234

    Article  CAS  Google Scholar 

  4. Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64:557–570

    Article  CAS  Google Scholar 

  5. Vong LB, Yoshitomi T, Matsui H, Nagasaki Y (2015) Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials 55:54–63

    Article  CAS  Google Scholar 

  6. Vong LB, Tomita T, Yoshitomi T, Matsui H, Nagasaki Y (2012) An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Gastroenterology 143:1027–1036

    Article  CAS  Google Scholar 

  7. Hua S, Marks E, Schneider JJ, Keely S (2015) Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomed Nanotechnol Biol Med 11:1117–1132

    Article  CAS  Google Scholar 

  8. Tian Y, Mao S (2012) Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs. Expert Opin Drug Deliv 9:687–700

    Article  CAS  Google Scholar 

  9. Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243

    Article  CAS  Google Scholar 

  10. Bellmann S et al (2015) Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdisc Rev Nanomed Nanobiotechnol 7:609–622

    Article  CAS  Google Scholar 

  11. Fröhlich EE, Fröhlich E (2016) Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int J Mol Sci 17:509

    Article  CAS  Google Scholar 

  12. Lai SK, Wang YY, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–171

    Article  CAS  Google Scholar 

  13. Yamanaka YJ, Leong KW (2008) Engineering strategies to enhance nanoparticle-mediated oral delivery. J Biomater Sci Polym Ed 19:1549–1570

    Article  CAS  Google Scholar 

  14. Tomita M, Shiga M, Hayashi M, Awazu S (1988) Enhancement of colonic drug absorption by the paracellular permeation route. Pharm Res 5:341–346

    Article  CAS  Google Scholar 

  15. Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:J226–J233

    Article  CAS  Google Scholar 

  16. Axson JL et al (2015) Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J Phys Chem C 119:20632–20641

    Article  CAS  Google Scholar 

  17. Damge C, Michel C, Aprahamian M, Couvreur P, Devissaguet J (1990) Nanocapsules as carriers for oral peptide delivery. J Controlled Release 13:233–239

    Article  CAS  Google Scholar 

  18. Yun Y, Cho YW, Park K (2013) Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 65:822–832

    Article  CAS  Google Scholar 

  19. Smola M, Vandamme T, Sokolowski A (2008) Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomed 3(1):1–19

    Article  CAS  Google Scholar 

  20. Goel A, Baboota S, Sahni JK, Ali J (2013) Exploring targeted pulmonary delivery for treatment of lung cancer. Int J Pharm Invest 3(1):8–14

    Article  CAS  Google Scholar 

  21. Mangal S, Gao W, Li T, Zhou QT (2017) Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 38(6):782–797

    Article  CAS  Google Scholar 

  22. Costa-Gouveia J et al (2017) Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci Rep 7(5390):1–14

    CAS  Google Scholar 

  23. Miller MR et al (2017) Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11:4542–4552

    Article  CAS  Google Scholar 

  24. Thorley AJ, Ruenraroengsak P, Potter TE, Tetley TD (2014) Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium. ACS Nano 8:11778–11789

    Article  CAS  Google Scholar 

  25. Bakand S, Hayes A (2016) Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci 17(6):1–17

    Article  CAS  Google Scholar 

  26. Siegmann K, Scherrer L, Siegmann H (1998) Physical and chemical properties of airborne nanoscale particles and how to measure the impact on human health. J Mol Struct (Thoechem) 458:191–201

    Article  Google Scholar 

  27. Fazlollahi F et al (2013) Nanoparticle translocation across mouse alveolar epithelial cell monolayers: species-specific mechanisms. Nanomed Nanotechnol Biol Med 9:786–794

    Article  CAS  Google Scholar 

  28. Yacobi NR et al (2010) Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol 42:604–614

    Article  CAS  Google Scholar 

  29. Kuzmov A, Minko T (2015) Nanotechnology approaches for inhalation treatment of lung diseases. J Controlled Release 219:500–518

    Article  CAS  Google Scholar 

  30. Pujalté I, Dieme D, Haddad S, Serventi AM, Bouchard M (2017) Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol Lett 265:77–85

    Article  CAS  Google Scholar 

  31. Palmer BC, DeLouise LA (2016) Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 21(12):1–17

    Article  CAS  Google Scholar 

  32. Wysocki AB (1999) Skin anatomy, physiology, and pathophysiology. Nurs Clin North America 34:777–797

    CAS  Google Scholar 

  33. Plascencia-Villa G, Bahena D, Rodríguez AR, Ponce A, José-Yacamán M (2013) Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages. Metallomics 5:242–250

    Article  CAS  Google Scholar 

  34. Deng Y, Ediriwickrema A, Yang F, Lewis J, Girardi M, Saltzman WM (2015) A sunblock based on bioadhesive nanoparticles. Nat Mater 14:1278–1285

    Article  CAS  Google Scholar 

  35. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127:1701–1712

    Article  CAS  Google Scholar 

  36. Zhang X, Le TA, Yoon J (2016) Development of a magnetic nanoparticles guidance system for interleaved actuation and MPI-based monitoring. In: IEEE international conference on intelligent robots and systems (IROS), 2016 IEEE/RSJ, pp 5279–5284

    Google Scholar 

  37. Shao J, Xuan M, Zhang H, Lin X, Wu Z, He Q (2017) Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport. Angew Chem Int Ed 56:12935–12939

    Article  CAS  Google Scholar 

  38. Lalka D, Griffith RK, Cronenberger CL (1993) The hepatic first-pass metabolism of problematic drugs. J Clin Pharmacol 33:657–669

    Article  CAS  Google Scholar 

  39. Milici AJ, L’Hernault N, Palade GE (1985) Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds. Circ Res 56:709–717

    Article  CAS  Google Scholar 

  40. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  CAS  Google Scholar 

  41. Chahibi Y, Pierobon M, Song SO, Akyildiz IF (2013) A molecular communication system model for particulate drug delivery systems. IEEE Trans Biomed Eng 60:3468–3483

    Article  Google Scholar 

  42. Tan J, Shah S, Thomas A, Ou-Yang HD, Liu Y (2013) The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluid 14:77–87

    Article  CAS  Google Scholar 

  43. Fullstone G, Wood J, Holcombe M, Battaglia G (2015) Modelling the transport of nanoparticles under blood flow using an agent-based approach. Sci Rep 5:10649

    Article  Google Scholar 

  44. Kelley WJ, Safari H, Lopez-Cazares G, Eniola-Adefeso O (2016) Vascular-targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases. Wiley Interdisc Rev Nanomed Nanobiotechnol 8:909–926

    Article  Google Scholar 

  45. Jelinek R (2015) Nanoparticles. Walter de Gruyter GmbH & Co KG

    Google Scholar 

  46. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951

    Article  CAS  Google Scholar 

  47. Yoo JW, Chambers E, Mitragotri S (2010) Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des 16:2298–2307

    Article  CAS  Google Scholar 

  48. Voigt J, Christensen J, Shastri VP (2014) Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proc Natl Acad Sci 111:2942–2947

    Article  CAS  Google Scholar 

  49. Wang Z, Tiruppathi C, Minshall RD, Malik AB (2009) Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3:4110–4116

    Article  CAS  Google Scholar 

  50. Schnitzer J (1992) gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol 262:H246–H254

    CAS  Google Scholar 

  51. Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93:105–113

    Article  CAS  Google Scholar 

  52. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus: insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 188:82–97

    Article  CAS  Google Scholar 

  53. Hrabětová S, Nicholson C (2007) Biophysical properties of brain extracellular space explored with ion-selective microelectrodes, integrative optical imaging and related techniques. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  54. Dukhin SS, Labib ME (2013) Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes. Adv Coll Interface Sci 199:23–43

    Article  CAS  Google Scholar 

  55. Wolak DJ, Thorne RG (2013) Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm 10:1492–1504

    Article  CAS  Google Scholar 

  56. Yao W, Li Y, Ding G (2012) Interstitial fluid flow: the mechanical environment of cells and foundation of meridians. Evid Based Complement Altern Med 2012:1–9

    Google Scholar 

  57. Stylianopoulos T et al (2010) Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J 99:1342–1349

    Article  CAS  Google Scholar 

  58. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664

    Article  CAS  Google Scholar 

  59. Kumar Khanna V (2012) Targeted delivery of nanomedicines. ISRN Pharmacol 2012:1–9

    Article  CAS  Google Scholar 

  60. Kawano K, Maitani Y (2011) Effects of polyethylene glycol spacer length and ligand density on folate receptor targeting of liposomal Doxorubicin in vitro. J Drug Deliv 2011:160967

    Article  CAS  Google Scholar 

  61. Chude-Okonkwo UAK, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: a survey. IEEE Commun Surv Tutorials 19:3046–3096

    Article  Google Scholar 

  62. Chude-Okonkwo UAK, Malekian BT Maharaj (2016) Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Trans Nanobiosci 15(3):230–245

    Article  Google Scholar 

  63. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA (2001) Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3:669–679

    Article  CAS  Google Scholar 

  64. Chung SH, Kuyucak S (2002) Recent advances in ion channel research. Biochimica et Biophysica Acta (BBA)—Biomembranes 1565:267–286

    Article  CAS  Google Scholar 

  65. Sukharev S, Sachs F (2012) Molecular force transduction by ion channels–diversity and unifying principles. J Cell Sci 125:3075–3083

    Article  CAS  Google Scholar 

  66. Saltzman WM (2001) Drug delivery: engineering principles for drug therapy. Oxford University Press, USA

    Google Scholar 

  67. Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Devel Ther 7:585–599

    CAS  Google Scholar 

  68. Farsad N, Eckford AW, Hiyama S (2012) A mathematical channel optimization formula for active transport molecular communication. In: IEEE international conference on communications (ICC), June, Ottawa, ON, Canada, pp 6137–6141

    Google Scholar 

  69. Farsad N, Eckford AW, Hiyama S (2014) A Markov chain channel model for active transport molecular communication. IEEE Trans Signal Process 62:2424–2436

    Article  Google Scholar 

  70. Farsad N, Eckford AW, Hiyama S, Moritani Y (2011) Quick system design of vesicle-based active transport molecular communication by using a simple transport model. Nano Commun Netw 2:175–188

    Article  Google Scholar 

  71. Darchinimaragheh K, Alfa AS (2015) An analytical model for molecular propagation in nanocommunication via filaments using relay-enabled nodes. IEEE Trans Nanobiosci 14:870–881

    Article  Google Scholar 

  72. Chahibi Y, Akyildiz IF, Balasingham I (2016) Propagation modeling and analysis of molecular motors in molecular communication. IEEE Trans Nanobiosci 15(8):917–927

    Article  Google Scholar 

  73. Goldsmith M, Abramovitz L, Peer D (2014) Precision nanomedicine in neurodegenerative diseases. ACS Nano 8:1958–1965

    Article  CAS  Google Scholar 

  74. Balevi E, Akan OB (2013) A physical channel model for nanoscale neuro-spike communications. IEEE Trans Commun 61:1178–1187

    Article  Google Scholar 

  75. Malak D, Akan OB (2013) A communication theoretical analysis of synaptic multiple-access channel in hippocampal-cortical neurons. IEEE Trans Commun 61:2457–2467

    Article  Google Scholar 

  76. Mesiti F, Balasingham I (2013) Nanomachine-to-neuron communication interfaces for neuronal stimulation at nanoscale. IEEE J Sel Areas Commun 31:695–704

    Article  Google Scholar 

  77. Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M (2013) Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 52:83–124

    Article  CAS  Google Scholar 

  78. Marcato PD (2014) Pharmacokinetics and pharmacodynamics of nanomaterials. Nanotoxicology 97–110

    Google Scholar 

  79. Li D, Emond C, Johanson G, Jolliet O (2013) Using a PBPK model to study the influence of different characteristics of nanoparticles on their biodistribution. J Phys Conf Ser, 012019

    Google Scholar 

  80. Li M, Al-Jamal KT, Kostarelos K, Reineke J (2010) Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4:6303–6317

    Article  CAS  Google Scholar 

  81. Nicholson C, Syková E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215

    Article  CAS  Google Scholar 

  82. Welter M, Rieger H (2013) Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. PLoS ONE 8:e70395–e70395

    Article  CAS  Google Scholar 

  83. Liu Y, Shah S, Tan J (2012) Computational modeling of nanoparticle targeted drug delivery. Rev Nanosci Nanotechnol 1:66–83

    Article  CAS  Google Scholar 

  84. Chahibi Y, Pierobon M, Akyildiz IF (2015) Pharmacokinetic modeling and biodistribution estimation through the molecular communication paradigm. IEEE Trans Biomed Eng 62:2410–2420

    Article  Google Scholar 

  85. Chahibi Y, Akyildiz IF (2014) Molecular communication noise and capacity analysis for particulate drug delivery systems. IEEE Trans Commun 62:3891–3903

    Article  Google Scholar 

  86. Felicetti L, Femminella M, Reali G, Gresele P, Malvestiti M, Daigle JN (2014) Modeling CD40-based molecular communications in blood vessels. IEEE Trans Nanobiosci 13:230–243

    Article  Google Scholar 

  87. Siepmann J, Siepmann F, Florence A (2006) Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms. Int J Pharm 314:101–119

    Article  CAS  Google Scholar 

  88. Zhang D, Luo G, Ding X, Lu C (2012) Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharmaceutica Sinica B 2:549–561

    Article  Google Scholar 

  89. Fu BM (2012) Experimental methods and transport models for drug delivery across the blood-brain barrier. Curr Pharm Biotechnol 13:1346–1359

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malekian .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chude-Okonkwo, U., Malekian, R., Maharaj, B.T. (2019). Understanding Delivery Routes and Operational Environments of Nanosystems. In: Advanced Targeted Nanomedicine. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-11003-1_4

Download citation

Publish with us

Policies and ethics