Intent-Aware Audience Targeting for Ride-Hailing Service

  • Yuan Xia
  • Jingbo ZhouEmail author
  • Jingjia Cao
  • Yanyan Li
  • Fei Gao
  • Kun Liu
  • Haishan Wu
  • Hui Xiong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11053)


As the market for ride-hailing service is increasing dramatically, an efficient audience targeting system (which aims to identify a group of recipients for a particular message) for ride-hailing services is demanding for marketing campaigns. In this paper, we describe the details of our deployed system for intent-aware audience targeting on Baidu Maps for ride-hailing services. The objective of the system is to predict user intent for requesting a ride and then send corresponding coupons to the user. For this purpose, we develop a hybrid model to combine the LSTM model and GBDT model together to handle sequential map query data and heterogeneous non-sequential data, which leads to a significant improvement in the performance of the intent prediction. We verify the effectiveness of our method over a large real-world dataset and conduct a large-scale online marketing campaign over Baidu Maps app. We present an in-depth analysis of the model’s performance and trade-offs. Both offline experiment and online marketing campaign evaluation show that our method has a consistently good performance in predicting user intent for a ride request and can significantly increase the click-through rate (CTR) of vehicle coupon targeting compared with baseline methods.


Audience targeting Location based service Marketing campaign 


  1. 1.
    Ahmed, A., Low, Y., Aly, M., Josifovski, V., Smola, A.J.: Scalable distributed inference of dynamic user interests for behavioral targeting. In: KDD, pp. 114–122. ACM (2011)Google Scholar
  2. 2.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR (2015)Google Scholar
  3. 3.
    Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)CrossRefGoogle Scholar
  4. 4.
    Chen, P.T., Hsieh, H.P.: Personalized mobile advertising: its key attributes, trends, and social impact. Technol. Forecast. Soc. Change 79(3), 543–557 (2012)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Pavlov, D., Canny, J.F.: Large-scale behavioral targeting. In: KDD, pp. 209–218. ACM (2009)Google Scholar
  6. 6.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Goldfarb, A., Tucker, C.E.: Online advertising, behavioral targeting, and privacy. Commun. ACM 54(5), 25–27 (2011)CrossRefGoogle Scholar
  8. 8.
    Graepel, T., Candela, J.Q., Borchert, T., Herbrich, R.: Web-scale Bayesian click-through rate prediction for sponsored search advertising in microsoft’s bing search engine. In: ICML, pp. 13–20 (2010)Google Scholar
  9. 9.
    Ha, J.W., Pyo, H., Kim, J.: Large-scale item categorization in e-commerce using multiple recurrent neural networks. In: KDD, pp. 107–115. ACM (2016)Google Scholar
  10. 10.
    Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: FreeSpan: frequent pattern-projected sequential pattern mining. In: KDD, pp. 355–359. ACM (2000)Google Scholar
  11. 11.
    Han, J., et al.: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: ICDE, pp. 215–224 (2001)Google Scholar
  12. 12.
    Hao, T., Zhou, J., Cheng, Y., Huang, L., Wu, H.: User identification in cyber-physical space: a case study on mobile query logs and trajectories. In: SIGSPATIAL, p. 71. ACM (2016)Google Scholar
  13. 13.
    He, X., et al.: Practical lessons from predicting clicks on ads at Facebook. In: ADKDD, pp. 1–9. ACM (2014)Google Scholar
  14. 14.
    Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  16. 16.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)Google Scholar
  17. 17.
    Li, K., Du, T.C.: Building a targeted mobile advertising system for location-based services. Decis. Supp. Syst. 54(1), 1–8 (2012)CrossRefGoogle Scholar
  18. 18.
    Liu, K., Tang, L.: Large-scale behavioral targeting with a social twist. In: CIKM, pp. 1815–1824. ACM (2011)Google Scholar
  19. 19.
    McMahan, H.B., et al.: Ad click prediction: a view from the trenches. In: KDD. pp. 1222–1230. ACM (2013)Google Scholar
  20. 20.
    Pandey, S., et al.: Learning to target: what works for behavioral targeting. In: CIKM, pp. 1805–1814. ACM (2011)Google Scholar
  21. 21.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Cogn. Model. 5(3), 1 (1988)zbMATHGoogle Scholar
  22. 22.
    Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). Scholar
  23. 23.
    Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS, pp. 3104–3112 (2014)Google Scholar
  24. 24.
    Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for sentiment classification. In: EMNLP, pp. 1422–1432 (2015)Google Scholar
  25. 25.
    Tang, J., et al.: Learning to rank audience for behavioral targeting in display ads. In: CIKM, pp. 605–610. ACM (2011)Google Scholar
  26. 26.
    Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)CrossRefGoogle Scholar
  27. 27.
    Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)CrossRefGoogle Scholar
  28. 28.
    Yan, J., Liu, N., Wang, G., Zhang, W., Jiang, Y., Chen, Z.: How much can behavioral targeting help online advertising? In: WWW, pp. 261–270. ACM (2009)Google Scholar
  29. 29.
    Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand prediction. In: AAAI (2018)Google Scholar
  30. 30.
    Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: KDD, pp. 353–362. ACM (2016)Google Scholar
  31. 31.
    Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI (2017)Google Scholar
  32. 32.
    Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for spatio-temporal data. In: SIGSPATIAL, pp. 92:1–92:4. ACM (2016)Google Scholar
  33. 33.
    Zhou, J., Pei, H., Wu, H.: Early warning of human crowds based on query data from Baidu maps: analysis based on shanghai stampede. In: Shen, Z., Li, M. (eds.) Big Data Support of Urban Planning and Management. AGIS, pp. 19–41. Springer, Cham (2018). Scholar
  34. 34.
    Zhou, J., Tung, A.K., Wu, W., Ng, W.S.: A “semi-lazy” approach to probabilistic path prediction in dynamic environments. In: KDD, pp. 748–756. ACM (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuan Xia
    • 2
  • Jingbo Zhou
    • 1
    • 3
    Email author
  • Jingjia Cao
    • 2
    • 5
  • Yanyan Li
    • 1
    • 3
  • Fei Gao
    • 2
  • Kun Liu
    • 2
  • Haishan Wu
    • 4
  • Hui Xiong
    • 1
    • 3
  1. 1.Business Intelligence Lab, Baidu ResearchBeijingChina
  2. 2.Baidu IncBeijingChina
  3. 3.National Engineering Laboratory of Deep Learning Technology and ApplicationBeijingChina
  4. Ltd.BeijingChina
  5. 5.Beijing Jiaotong UniversityBeijingChina

Personalised recommendations