Imaging of Occult Spinal Dysraphism

  • Krista Greenan
  • David Mirsky
  • Todd C. HankinsonEmail author


Imaging of occult spinal dysraphism (OSD) has evolved significantly over the recent years. The preferred imaging modality of choice for most, if not all, lesions is MRI. In this chapter, we review imaging of five clinically relevant OSDs: low conus medullaris, dermal sinus tract, lipomyelomeningocele, neurenteric cyst, and split cord malformation. In each section, we take the opportunity to explore related topics. In the first section, the topics of nondiagnostic imaging in tethered cord syndrome, incidental fatty fila, and evaluation of the sacral dimple are discussed. The next section, on dermal sinus tracts, includes a discussion about related diagnoses, including the newer diagnostic entity of limited dorsal myeloschisis (LMD) and the more historical meningocele manqué (MM). A third section discusses the imaging characteristics of lipomyelomeningocele, with a subsection on related diagnoses such as meningocele and myelocele. After discussions about neurenteric cysts (NECs) and split cord malformations (SCMs), we discuss future directions for imaging of OSD.


Tethered spinal cord Dermal sinus tract Lipomyelomeningocele Neurenteric cyst Split cord malformation Limited dorsal myeloschisis Meningocele manqué Sacral dimple 


  1. 1.
    Morioka T, Hashiguchi K, Yoshida F, Nagata S, Miyagi Y, Mihara F, Sasaki T. Dynamic morphological changes in lumbosacral lipoma during the first months of life revealed by constructive interference in steady-state (CISS) MR imaging. Childs Nerv Syst. 2007;23(4):415–20.PubMedGoogle Scholar
  2. 2.
    Nakanishi K, Tanaka N, Kamei N, Nakamae T, Izumi B, Ohta R, Fujioka Y, Ochi M. Use of prone position magnetic resonance imaging for detecting the terminal filum in patients with occult tethered cord syndrome. J Neurosurg Spine. 2013;18(1):76–84.PubMedGoogle Scholar
  3. 3.
    Oz O, Ulas UH, Duz B, Yucel M, Odabasi Z. Electrophysiological findings in patients with adult tethered cord syndrome. Turk Neurosurg. 2010;20(1):16–20.PubMedGoogle Scholar
  4. 4.
    Pinto FC, Fontes RB, Leonhardt Mde C, Amodio DT, Porro FF, Machado J. Anatomic study of the filum terminale and its correlations with the tethered cord syndrome. Neurosurgery. 2002;51(3):725–9. discussion 729–30PubMedGoogle Scholar
  5. 5.
    Yundt KD, Park TS, Kaufman BA. Normal diameter of filum terminale in children: in vivo measurement. Pediatr Neurosurg. 1997;27(5):257–9.PubMedGoogle Scholar
  6. 6.
    Perlitz Y, Izhaki I, Ben-Ami M. Sonographic evaluation of the fetal conus medullaris at 20 to 24 weeks’ gestation. Prenat Diagn. 2010;30(9):862–4.PubMedGoogle Scholar
  7. 7.
    Sahin F, Selçuki M, Ecin N, Zenciroğlu A, Unlü A, Yilmaz F, Maviş N, Saribaş S. Level of conus medullaris in term and preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1997;77(1):F67–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Erkan K, Unal F, Kiris T. Terminal syringomyelia in association with the tethered cord syndrome. Neurosurgery. 1999;45(6):1351–9. discussion 1359–60PubMedGoogle Scholar
  9. 9.
    Iskandar BJ, Oakes WJ, McLaughlin C, Osumi AK, Tien RD. Terminal syringohydromyelia and occult spinal dysraphism. J Neurosurg. 1994;81(4):513–9.PubMedGoogle Scholar
  10. 10.
    Sigal R, Denys A, Halimi P, Shapeero L, Doyon D, Boudghène F. Ventriculus terminalis of the conus medullaris: MR imaging in four patients with congenital dilatation. AJNR Am J Neuroradiol. 1991;12(4):733–7.PubMedGoogle Scholar
  11. 11.
    Unsinn KM, Geley T, Freund MC, Gassner I. US of the spinal cord in newborns: spectrum of normal findings, variants, congenital anomalies, and acquired diseases. Radiographics. 2000;20(4):923–38.PubMedGoogle Scholar
  12. 12.
    Coleman LT, Zimmerman RA, Rorke LB. Ventriculus terminalis of the conus medullaris: MR findings in children. AJNR Am J Neuroradiol. 1995;16(7):1421–6.PubMedGoogle Scholar
  13. 13.
    Rodriguez A, Kuhn EN, Somasundaram A, Couture DE. Management of idiopathic pediatric syringohydromyelia. J Neurosurg Pediatr. 2015;16(4):452–7.PubMedGoogle Scholar
  14. 14.
    Warder DE, Oakes WJ. Tethered cord syndrome and the conus in a normal position. Neurosurgery. 1993;33(3):374–8.PubMedGoogle Scholar
  15. 15.
    Fabiano AJ, Khan MF, Rozzelle CJ, Li V. Preoperative predictors for improvement after surgical untethering in occult tight filum terminale syndrome. Pediatr Neurosurg. 2009;45(4):256–61.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Selçuki M, Vatansever S, Inan S, Erdemli E, Bağdatoğlu C, Polat A. Is a filum terminale with a normal appearance really normal? Childs Nerv Syst. 2003;19(1):3–10.PubMedGoogle Scholar
  17. 17.
    Selçuki M, Coskun K. Management of tight filum terminale syndrome with special emphasis on normal level conus medullaris (NLCM). Surg Neurol. 1998;50(4):318–22.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Bao N, Chen ZH, Gu S, Chen QM, Jin HM, Shi CR. Tight filum terminale syndrome in children: analysis based on positioning of the conus and absence or presence of lumbosacral lipoma. Childs Nerv Syst. 2007;23(10):1129–34.PubMedGoogle Scholar
  19. 19.
    Vernet O, O’Gorman AM, Farmer JP, McPhillips M, Montes JL. Use of the prone position in the MRI evaluation of spinal cord retethering. Pediatr Neurosurg. 1996;25(6):286–94.PubMedGoogle Scholar
  20. 20.
    Brown E, Matthes JC, Bazan C 3rd, Jinkins JR. Prevalence of incidental intraspinal lipoma of the lumbosacral spine as determined by MRI. Spine (Phila Pa 1976). 1994;19(7):833–6.Google Scholar
  21. 21.
    Al-Omari MH, Eloqayli HM, Qudseih HM, Al-Shinag MK. Isolated lipoma of filum terminale in adults: MRI findings and clinical correlation. J Med Imaging Radiat Oncol. 2011;55(3):286–90.PubMedGoogle Scholar
  22. 22.
    Al-Habib AF, Al-Rashidi SM, Al-Badr FB, Hassan HH. Radiological predictors of neurological compromise in adults with filum terminale lipoma. Neurosciences (Riyadh). 2013;18(2):180–2.Google Scholar
  23. 23.
    Albert GW. Spine ultrasounds should not be routinely performed for patients with simple sacral dimples. Acta Paediatr. 2016;105(8):890–4.PubMedGoogle Scholar
  24. 24.
    Ben-Sira L, Ponger P, Miller E, Beni-Adani L, Constantini S. Low-risk lumbar skin stigmata in infants: the role of ultrasound screening. J Pediatr. 2009;155(6):864–9.PubMedGoogle Scholar
  25. 25.
    Chern JJ, Kirkman JL, Shannon CN, Tubbs RS, Stone JD, Royal SA, Oakes WJ, Rozzelle CJ, Wellons JC. Use of lumbar ultrasonography to detect occult spinal dysraphism. J Neurosurg Pediatr. 2012;9(3):274–9.PubMedGoogle Scholar
  26. 26.
    Kucera JN, Coley I, O’Hara S, Kosnik EJ, Coley BD. The simple sacral dimple: diagnostic yield of ultrasound in neonates. Pediatr Radiol. 2015;45(2):211–6.PubMedGoogle Scholar
  27. 27.
    McGovern M, Mulligan S, Carney O, Wall D, Moylett E. Ultrasound investigation of sacral dimples and other stigmata of spinal dysraphism. Arch Dis Child. 2013;98(10):784–6.PubMedGoogle Scholar
  28. 28.
    Bulsara KR, Zomorodi AR, Enterline DS, George TM. The value of magnetic resonance imaging in the evaluation of fatty filum terminale. Neurosurgery. 2004;54(2):375–9. discussion 379–80PubMedGoogle Scholar
  29. 29.
    Harada A, Nishiyama K, Yoshimura J, Sano M, Fujii Y. Intraspinal lesions associated with sacrococcygeal dimples. J Neurosurg Pediatr. 2014;14(1):81–6.PubMedGoogle Scholar
  30. 30.
    O’Neill BR, Gallegos D, Herron A, Palmer C, Stence NV, Hankinson TC, Corbett Wilkinson C, Handler MH. Use of magnetic resonance imaging to detect occult spinal dysraphism in infants. J Neurosurg Pediatr. 2017;19(2):217–26.PubMedGoogle Scholar
  31. 31.
    Tamura G, Morota N, Ihara S. Impact of magnetic resonance imaging and urodynamic studies on the management of sacrococcygeal dimples. J Neurosurg Pediatr. 2017;20(3):289–97.PubMedGoogle Scholar
  32. 32.
    Barkovich AJ, Edwards MS, Cogen PH. MR evaluation of spinal dermal sinus tracts in children. AJNR Am J Neuroradiol. 1991;12(1):123–9.PubMedGoogle Scholar
  33. 33.
    Pang D. Sacral agenesis and caudal spinal cord malformations. Neurosurgery. 1993;32(5):755–78. discussion 778–9PubMedGoogle Scholar
  34. 34.
    Pang D, Zovickian J, Oviedo A, Moes GS. Limited dorsal myeloschisis: a distinctive clinicopathological entity. Neurosurgery. 2010;67(6):1555–79. discussion 1579–80PubMedGoogle Scholar
  35. 35.
    McComb JG. A practical clinical classification of spinal neural tube defects. Childs Nerv Syst. 2015;31(10):1641–57.PubMedGoogle Scholar
  36. 36.
    Lee SM, Cheon JE, Choi YH, Kim IO, Kim WS, Cho HH, Lee JY, Wang KC. Limited dorsal myeloschisis and congenital dermal sinus: comparison of clinical and MR imaging features. AJNR Am J Neuroradiol. 2017;38(1):176–82.PubMedGoogle Scholar
  37. 37.
    Eibach S, Moes G, Zovickian J, Pang D. Limited dorsal myeloschisis associated with dermoid elements. Childs Nerv Syst. 2017;33(1):55–67.PubMedGoogle Scholar
  38. 38.
    Friszer S, Dhombres F, Morel B, Zerah M, Jouannic JM, Garel C. Limited dorsal myeloschisis: a diagnostic pitfall in the prenatal ultrasound of fetal dysraphism. Fetal Diagn Ther. 2017;41(2):136–44.PubMedGoogle Scholar
  39. 39.
    Russell NE, Chalouhi GE, Dirocco F, Zerah M, Ville Y. Not all large neural tube defects have a poor prognosis: a case of prenatally diagnosed limited dorsal myeloschisis. Ultrasound Obstet Gynecol. 2013;42(2):238–9.PubMedGoogle Scholar
  40. 40.
    Kaffenberger DA, Heinz ER, Oakes JW, Boyko O. Meningocele manqué: radiologic findings with clinical correlation. AJNR Am J Neuroradiol. 1992;13(4):1083–8.PubMedGoogle Scholar
  41. 41.
    Tubbs RS, McGirt MJ, Warder DE, Oakes WJ. Neurological presentation and long-term outcome following operative intervention in patients with meningocele manqué. Br J Neurosurg. 2003;17(3):230–3.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Rajpal S, Salamat MS, Tubbs RS, Kelly DR, Oakes WJ, Iskandar BJ. Tethering tracts in spina bifida occulta: revisiting an established nomenclature. J Neurosurg Spine. 2007;7(3):315–22.PubMedGoogle Scholar
  43. 43.
    Felekis T, Korkontzelos I, Akrivis C, Tsirkas P, Zagaliki A. Prenatal diagnosis of lipomyelomeningocele by ultrasound and magnetic resonance imaging (MRI). Clin Exp Obstet Gynecol. 2015;42(5):711–3.PubMedGoogle Scholar
  44. 44.
    Segal LS, Czoch W, Hennrikus WL, Wade Shrader M, Kanev PM. The spectrum of musculoskeletal problems in lipomyelomeningocele. J Child Orthop. 2013;7(6):513–9.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Tubbs RS, Oakes WJ. Lipomyelomeningocele and arteriovenous malformation: case reports and a review of the literature. Childs Nerv Syst. 2006;22(6):628–31.PubMedGoogle Scholar
  46. 46.
    Lee JH, Chung CK, Choe G, Chi JG, Chang KH, Kim HJ. Combined anomaly of intramedullary arteriovenous malformation and lipomyelomeningocele. AJNR Am J Neuroradiol. 2000;21(3):595–600.PubMedGoogle Scholar
  47. 47.
    Weon YC, Chung JI, Roh HG, Eoh W, Byun HS. Combined spinal intramedullary arteriovenous malformation and lipomyelomeningocele. Neuroradiology. 2005;47(10):774–9.PubMedGoogle Scholar
  48. 48.
    Dhandapani S, Srinivasan A. Contiguous triple spinal dysraphism associated with Chiari malformation type II and hydrocephalus: an embryological conundrum between the unified theory of Pang and the unified theory of McLone. J Neurosurg Pediatr. 2016;17(1):103–6.PubMedGoogle Scholar
  49. 49.
    Murakami N, Morioka T, Ichiyama M, Nakamura R, Kawamura N. Lateral lipomyelomeningocele of the hemicord with split cord malformation type I revealed by 3D heavily T2-weighted MR imaging. Childs Nerv Syst. 2017;33(6):993–7.PubMedGoogle Scholar
  50. 50.
    Cai C, Shen C, Yang W, Zhang Q, Hu X. Intraspinal neurenteric cysts in children. Can J Neurol Sci. 2008;35(5):609–15.PubMedGoogle Scholar
  51. 51.
    Menezes AH, Traynelis VC. Spinal neurenteric cysts in the magnetic resonance imaging era. Neurosurgery. 2006;58(1):97–105. discussion 97–105PubMedGoogle Scholar
  52. 52.
    de Oliveira RS, Cinalli G, Roujeau T, Sainte-Rose C, Pierre-Kahn A, Zerah M. Neurenteric cysts in children: 16 consecutive cases and review of the literature. J Neurosurg. 2005;103(6 Suppl):512–23.PubMedGoogle Scholar
  53. 53.
    Al-Ahmed IH, Boughamoura M, Dirks P, Kulkarni AV, Rutka JT, Drake JM. Neurosurgical management of neurenteric cysts in children. J Neurosurg Pediatr. 2013;11(5):511–7.PubMedGoogle Scholar
  54. 54.
    Rauzzino MJ, Tubbs RS, Alexander E 3rd, Grabb PA, Oakes WJ. Spinal neurenteric cysts and their relation to more common aspects of occult spinal dysraphism. Neurosurg Focus. 2001;10(1):e2.PubMedGoogle Scholar
  55. 55.
    Brooks BS, Duvall ER, el Gammal T, Garcia JH, Gupta KL, Kapila A. Neuroimaging features of neurenteric cysts: analysis of nine cases and review of the literature. AJNR Am J Neuroradiol. 1993;14(3):735–46.PubMedGoogle Scholar
  56. 56.
    Jung HS, Park SM, Kim GU, Kim MK, Song KS. Unique imaging features of spinal neurenteric cyst. Clin Orthop Surg. 2015;7(4):515–8.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Muzumdar D, Bhatt Y, Sheth J. Intramedullary cervical neurenteric cyst mimicking an abscess. Pediatr Neurosurg. 2008;44(1):55–61.PubMedGoogle Scholar
  58. 58.
    Paolini S, Ciappetta P, Domenicucci M, Guiducci A. Intramedullary neurenteric cyst with a false mural nodule: case report. Neurosurgery. 2003;52(1):243–5. discussion 246PubMedGoogle Scholar
  59. 59.
    Theret E, Litre CF, Lefebvre F, Eap C, Duntze J, Scherpereel B, Rousseaux P. Huge intramedullary neurenteric cyst with intrathoracic development in a 1 month-old boy: excision though the anterior approach. A case report and review of the literature. Acta Neurochir. 2010;152(3):481–3.PubMedGoogle Scholar
  60. 60.
    Garg K, Tandon V, Mahapatra AK. A unique case of split cord malformation type 1 with three different types of bony spurs. Asian J Neurosurg. 2017;12(2):305–8.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Liu W, Zheng D, Cui S, Zhang C, Liu Y, Jia Y, Shi T, Huang H, Hei B, Wang P. Characteristics of osseous septum of split cord malformation in patients presenting with scoliosis: a retrospective study of 48 cases. Pediatr Neurosurg. 2009;45(5):350–3.PubMedGoogle Scholar
  62. 62.
    Castillo M, Hankins L, Kramer L, Wilson BA. MR imaging of diplomyelia. Magn Reson Imaging. 1992;10(4):699–703.PubMedGoogle Scholar
  63. 63.
    Wei Q, Cai A, Wang X, Wang X, Xie L. The value of prenatal ultrasonographic diagnosis of diastematomyelia. J Ultrasound Med. 2017;36(6):1129–36.PubMedGoogle Scholar
  64. 64.
    Dean DC 3rd, Dirks H, O’Muircheartaigh J, Walker L, Jerskey BA, Lehman K, Han M, Waskiewicz N, Deoni SC. Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep. Pediatr Radiol. 2014;44(1):64–72.PubMedGoogle Scholar
  65. 65.
    Waitayawinyu P, Wankan P. The success of MRI without sedations in 6–15 years old pediatric patients after watching MRI introductory video. J Med Assoc Thail. 2016;99(5):596–601.Google Scholar
  66. 66.
    Theys C, Wouters J, Ghesquière P. Diffusion tensor imaging and resting-state functional MRI-scanning in 5- and 6-year-old children: training protocol and motion assessment. PLoS One. 2014;9(4):e94019.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Barnea-Goraly N, Weinzimer SA, Ruedy KJ, Mauras N, Beck RW, Marzelli MJ, Mazaika PK, Aye T, White NH, Tsalikian E, Fox L, Kollman C, Cheng P, Reiss AL, Diabetes Research in Children Network (DirecNet). High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner – the Diabetes Research in Children Network (DirecNet) experience. Pediatr Radiol. 2014;44(2):181–6.PubMedGoogle Scholar
  68. 68.
    Vannest J, Rajagopal A, Cicchino ND, Franks-Henry J, Simpson SM, Lee G, Altaye M, Sroka C, Holland SK, CMIND Authorship Consortium. Factors determining success of awake and asleep magnetic resonance imaging scans in nonsedated children. Neuropediatrics. 2014;45(6):370–7.PubMedGoogle Scholar
  69. 69.
    Longo MG, Fagundes J, Huang S, Mehan W, Witzel T, Bhat H, Heberlein K, Rosen BR, Rosenthal D, Gonzalez RG, Schaefer PW, Rapalino O. Simultaneous multislice-based 5-minute lumbar spine MRI protocol: initial experience in a clinical setting. J Neuroimaging. 2017;27(5):442–6.PubMedGoogle Scholar
  70. 70.
    Rutman AM, Peterson DJ, Cohen WA, Mossa-Basha M. Diffusion tensor imaging of the spinal cord: clinical value, investigational applications, and technical limitations. Curr Probl Diagn Radiol. 2017;47:257–69. pii: S0363-0188(17)30142-1PubMedGoogle Scholar
  71. 71.
    Egloff A, Bulas D. Magnetic resonance imaging evaluation of fetal neural tube defects. Semin Ultrasound CT MR. 2015;36(6):487–500.PubMedGoogle Scholar
  72. 72.
    Nagaraj UD, Bierbrauer KS, Peiro JL, Kline-Fath BM. Differentiating closed versus open spinal dysraphisms on fetal MRI. AJR Am J Roentgenol. 2016;207(6):1316–23.PubMedGoogle Scholar
  73. 73.
    Williams F, Griffiths PD. Spinal neural tube defects on in utero MRI. Clin Radiol. 2013;68(12):e715–22.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Krista Greenan
    • 1
    • 2
  • David Mirsky
    • 1
    • 2
  • Todd C. Hankinson
    • 1
    • 2
    Email author
  1. 1.Division of NeurosurgeryChildren’s Hospital of ColoradoAuroraUSA
  2. 2.Department of RadiologyChildren’s Hospital of ColoradoAuroraUSA

Personalised recommendations