Biorefinery pp 185-210 | Cite as

Applications of Ionic Liquids and Deep Eutectic Solvents in Biorefinery-Biodiesel Production

  • I. Wazeer
  • M. K. Hadj-Kali
  • I. M. AlNashefEmail author


Serious environmental concerns resulting from the use of fossil fuels have urged the scientific community to concentrate their efforts on finding alternative clean fuels and sustainable raw materials. Biofuels offer a reduction in fossil fuel usage instead, potentially reducing carbon emissions. In addition, some biofuels are considered a clean and biodegradable substitute produced via different processes depending on both the raw material and the products. Ionic liquids (ILs), a new class of solvents, have many favorable characteristics, e.g., low vapor pressure, non-flammability, ability to dissolve polar and nonpolar compounds, and thermal stability. In this chapter, the use of ILs and their analogues deep eutectic solvents (DESs) in the production and treatment of biodiesel is investigated.


Ionic liquids Deep eutectic solvents Biorefinery Biofuels Biodiesel Biomass Green solvents Purification 



1 butyl-3-methyl imidazolium tetrafluoroborate


1-n-butyl-3-methylimidazolium tetrachloro-indate


1-butyl-3-methyl imidazolium dicyanamide


1-butyl-3-methyl imidazolium hexafluorophosphate


1 butyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl)imide


1-butyl-3-methylimidazolium imidazolide


1-butyl-3-methylimidazolium hydroxide


1-butyl-2,3-dimethylimidazolium bis(trifluoromethyl sulfonyl)imide


1-(4-sulfonic acid) butylpyridinium trifluoromethanesulfonate


1-(4-sulfonic acid) butylpyridinium hydrogen sulfate


1-hexadecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide


1-octadecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide


1-ethyl-3-methylimidazolium acetate


1-ethyl-3-methyl imidazolium hexafluorophosphate


1-ethyl-3-methylimidazolium trifluoromethanesulfonate


1-ethyl-3-methyl imidazolium tetrafluoroborate


1-ethyl-3-methyl imidazolium chloride


1-ethyl-3-methyl imidazolium diethylphosphate


1-ethyl-3-methyl imidazolium ethyl sulfate


1-ethyl-3-methyl imidazolium thiocyanate


1-hexyl-3-methyl imidazolium tetrafluoroborate


1-hexyl-3-methyl imidazolium dicyanamide


1-hexyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl)imide


1-hexyl-2,3-dimethylimidazolium bis(trifluoromethyl sulfonyl)imide


N-methyl-2-pyrrolidonium methyl sulfonate


1-methyl-3-octylimidazolium hexafluorophosphate


1-methyl-3-octylimidazolium bis(trifluoromethyl sulfonyl)imide


1-octyl-2,3-dimethylimidazolium bis(trifluoromethyl sulfonyl)imide


1-octyl-3-methylpyridinium tetrafluoroborate


(2-(4-sulfobutyl) pyrazolium hydrogensulfate)


1-(4-sulfonic acid) butyl-3-methylimidazolium hydrogen sulfate


1-(propyl-3-sulfonate) imidazolium hydrogen sulfate


1-(4-sulfonic acid) butylpyridinium hydrogen sulfate


Acidic crude palm oil


Bitter apple oil


Choline acetate


Choline chloride




Deep eutectic solvents


Dimethyl carbonate


Fatty acid methyl esters




Hydrogen bond acceptor


Hydrogen bond donor


1-hexylpyridinium bromide


Ionic liquids


Bis-(3-methyl-1-imidazole)-ethylene dihydroxide


Bis-(3-methyl-1-imidazole)-propylene dihydroxide


Bis-(3-methyl-1-imidazole)-butylene dihydroxide


Bis-(3-methyl-1-imidazole)-pentylene dihydroxide


Bis-(3-methyl-1-imidazole)-hexylene dihydroxide


Potassium hydroxide


Low-grade crude palm oil


Magnetic ILs


Methyl tertiary butyl ether


Methyl triphenyl phosphonium bromide




p-toluenesulfonic acid


Supercritical carbon dioxide


Total fatty acid


  1. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147CrossRefGoogle Scholar
  2. Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9(8):868–872CrossRefGoogle Scholar
  3. Abu-Eishah SI (2011) Ionic liquids recycling for reuse. In: Ionic liquids-classes and properties. InTech, RijekaGoogle Scholar
  4. Aghabarari B, Ghiaci M, Amini SG, Rahimi E, Martinez-Huerta M (2014) Esterification of fatty acids by new ionic liquids as acid catalysts. J Taiwan Inst Chem Eng 45(2):431–435CrossRefGoogle Scholar
  5. Andreani L, Rocha J (2012) Use of ionic liquids in biodiesel production: a review. Braz J Chem Eng 29(1):1–13CrossRefGoogle Scholar
  6. Atadashi I, Aroua M, Aziz AA (2011) Biodiesel separation and purification: a review. Renew Energy 36(2):437–443CrossRefGoogle Scholar
  7. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917CrossRefGoogle Scholar
  8. Chiappe C, Mezzetta A, Pomelli CS, Iaquaniello G, Gentile A, Masciocchi B (2016) Development of cost-effective biodiesel from microalgae using protic ionic liquids. Green Chem 18(18):4982–4989CrossRefGoogle Scholar
  9. Choi S-A, Oh Y-K, Jeong M-J, Kim SW, Lee J-S, Park J-Y (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 65:169–174CrossRefGoogle Scholar
  10. D’Agostino C, Harris RC, Abbott AP, Gladden LF, Mantle MD (2011) Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1 H pulsed field gradient NMR spectroscopy. Phys Chem Chem Phys 13(48):21383–21391CrossRefGoogle Scholar
  11. De Diego T, Manjón A, Lozano P, Iborra JL (2011) A recyclable enzymatic biodiesel production process in ionic liquids. Bioresour Technol 102(10):6336–6339CrossRefGoogle Scholar
  12. Dibble DC, Li C, Sun L, George A, Cheng A, Çetinkol ÖP, Benke P, Holmes BM, Singh S, Simmons BA (2011) A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chem 13(11):3255–3264CrossRefGoogle Scholar
  13. Dorian JP, Franssen HT, Simbeck DR (2006) Global challenges in energy. Energy Policy 34(15):1984–1991CrossRefGoogle Scholar
  14. Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P (2012) Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem 47(12):2081–2089CrossRefGoogle Scholar
  15. Elsheikh YA (2014) Optimization of novel pyrazolium ionic liquid catalysts for transesterification of bitter apple oil. Process Saf Environ Prot 92(6):828–834CrossRefGoogle Scholar
  16. Fan M, Huang J, Yang J, Zhang P (2013) Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst. Appl Energy 108:333–339CrossRefGoogle Scholar
  17. Gamba M, Lapis AA, Dupont J (2008) Supported ionic liquid enzymatic catalysis for the production of biodiesel. Adv Synth Catal 350(1):160–164CrossRefGoogle Scholar
  18. Gorke JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun (10):1235–1237Google Scholar
  19. Grimes SM, Kewcharoenwong P (2017) Dual-functionality ionic liquid mix for extraction and esterification of fatty acids as a step towards increasing the efficiency of conversion of waste cooking oils to biodiesel. J Chem Technol Biotechnol 92(8):2098–2105CrossRefGoogle Scholar
  20. Gu L, Huang W, Tang S, Tian S, Zhang X (2015) A novel deep eutectic solvent for biodiesel preparation using a homogeneous base catalyst. Chem Eng J 259:647–652CrossRefGoogle Scholar
  21. Ha SH, Lan MN, Lee SH, Hwang SM, Koo Y-M (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzym Microb Technol 41(4):480–483CrossRefGoogle Scholar
  22. Haerens K, Van Deuren S, Matthijs E, Van der Bruggen B (2010) Challenges for recycling ionic liquids by using pressure driven membrane processes. Green Chem 12(12):2182–2188CrossRefGoogle Scholar
  23. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM (2010) A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Process Technol 91(1):116–120CrossRefGoogle Scholar
  24. Hayyan A, Hashim MA, Hayyan M, Mjalli FS, AlNashef IM (2013a) A novel ammonium based eutectic solvent for the treatment of free fatty acid and synthesis of biodiesel fuel. Ind Crop Prod 46:392–398CrossRefGoogle Scholar
  25. Hayyan A, Hashim MA, Mjalli FS, Hayyan M, AlNashef IM (2013b) A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil. Chem Eng Sci 92:81–88CrossRefGoogle Scholar
  26. Hayyan A, Hashim MA, Hayyan M, Mjalli FS, AlNashef IM (2014) A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent. J Clean Prod 65:246–251CrossRefGoogle Scholar
  27. Hoekman SK (2009) Biofuels in the US–challenges and opportunities. Renew Energy 34(1):14–22CrossRefGoogle Scholar
  28. Huang W, Tang S, Zhao H, Tian S (2013) Activation of commercial CaO for biodiesel production from rapeseed oil using a novel deep eutectic solvent. Ind Eng Chem Res 52(34):11943–11947CrossRefGoogle Scholar
  29. Huang ZL, Wu BP, Wen Q, Yang TX, Yang Z (2014) Deep eutectic solvents can be viable enzyme activators and stabilizers. J Chem Technol Biotechnol 89(12):1975–1981CrossRefGoogle Scholar
  30. Idaham NF, Bustam Khalil MA, Kait CF (2014) Study on the Recovery of 1-butyl-3-methylimidazolium-based Ionic Liquids. Appl Mech Mater 625:144–147. Trans Tech PublicationsCrossRefGoogle Scholar
  31. Isahak W, Ismail M, Jahim JM, Salimon J, Yarmo M (2011) Transesterification of palm oil by using ionic liquids as a new potential catalyst. Trends Appl Sci Res 6(9):1055CrossRefGoogle Scholar
  32. Jain N, Kumar A, Chauhan S, Chauhan S (2005) Chemical and biochemical transformations in ionic liquids. Tetrahedron 61(5):1015–1060CrossRefGoogle Scholar
  33. Kanel JS (2003) Overview: industrial application of ionic liquids for liquid extraction. In: Chemical industry vision 2020 technology partnership workshop, New YorkGoogle Scholar
  34. Kaygusuz K (2009) Bioenergy as a clean and sustainable fuel. Energy Sources A 31(12):1069–1080CrossRefGoogle Scholar
  35. Kim Y-H, Choi Y-K, Park J, Lee S, Yang Y-H, Kim HJ, Park T-J, Kim YH, Lee SH (2012) Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315CrossRefGoogle Scholar
  36. Kuzmina O (2016) Methods of IL recovery and destruction. In: Application, purification, and recovery of ionic liquids. Elsevier, Oxford, pp 205–248CrossRefGoogle Scholar
  37. Leung DY, Wu X, Leung M (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095CrossRefGoogle Scholar
  38. Li K-X, Chen L, Yan Z-C, Wang H-L (2010) Application of pyridinium ionic liquid as a recyclable catalyst for acid-catalyzed transesterification of Jatropha oil. Catal Lett 139(3–4):151–156CrossRefGoogle Scholar
  39. Liang J-h, Ren X-q, Wang J-t, Li Z-j (2010) Preparation of biodiesel by transesterification from cottonseed oil using the basic dication ionic liquids as catalysts. J Fuel Chem Technol 38(3):275–280CrossRefGoogle Scholar
  40. Lindberg D, de la Fuente Revenga M, Widersten M (2010) Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol 147(3):169–171CrossRefGoogle Scholar
  41. Liu Y, Chen D, Yan Y, Peng C, Xu L (2011) Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresour Technol 102(22):10414–10418CrossRefGoogle Scholar
  42. Luo H, Fan W, Li Y, Nan G (2013) Biodiesel production using alkaline ionic liquid and adopted as lubricity additive for low-sulfur diesel fuel. Bioresour Technol 140:337–341CrossRefGoogle Scholar
  43. Mai NL, Ahn K, Koo Y-M (2014) Methods for recovery of ionic liquids—a review. Process Biochem 49(5):872–881CrossRefGoogle Scholar
  44. Manic MS, Najdanovic-Visak V, da Ponte MN, Visak ZP (2011) Extraction of free fatty acids from soybean oil using ionic liquids or poly(ethyleneglycol)s. AICHE J 57(5):1344–1355CrossRefGoogle Scholar
  45. Manirakiza P, Covaci A, Schepens P (2001) Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods. J Food Compos Anal 14(1):93–100CrossRefGoogle Scholar
  46. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232CrossRefGoogle Scholar
  47. Maugeri Z, Leitner W, Domínguez de María P (2013) Chymotrypsin-catalyzed peptide synthesis in deep eutectic solvents. Eur J Org Chem 2013(20):4223–4228CrossRefGoogle Scholar
  48. Merza F, Fawzy A, AlNashef I, Al-Zuhair S, Taher H (2018) Effectiveness of using deep eutectic solvents as an alternative to conventional solvents in enzymatic biodiesel production from waste oils. Energy Rep 4:77–83CrossRefGoogle Scholar
  49. Neto BAD, Alves MB, Lapis AA, Nachtigall FM, Eberlin MN, Dupont J, Suarez PA (2007) 1-n-Butyl-3-methylimidazolium tetrachloro-indate (BMI· InCl4) as a media for the synthesis of biodiesel from vegetable oils. J Catal 249(2):154–161CrossRefGoogle Scholar
  50. Pan Y, Alam MA, Wang Z, Huang D, Hu K, Chen H, Yuan Z (2017) One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. Bioresour Technol 238:157–163CrossRefGoogle Scholar
  51. Park S, Kazlauskas RJ (2001) Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem 66(25):8395–8401CrossRefGoogle Scholar
  52. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids–advantages beyond green technology. Curr Opin Biotechnol 14(4):432–437CrossRefGoogle Scholar
  53. Potdar MK, Kelso GF, Schwarz L, Zhang C, Hearn MT (2015) Recent developments in chemical synthesis with biocatalysts in ionic liquids. Molecules 20(9):16788–16816CrossRefGoogle Scholar
  54. Qin J, Zou X, Lv S, Jin Q, Wang X (2016) Influence of ionic liquids on lipase activity and stability in alcoholysis reactions. RSC Adv 6(90):87703–87709CrossRefGoogle Scholar
  55. Ramluckan K, Moodley KG, Bux F (2014) An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel 116:103–108CrossRefGoogle Scholar
  56. Richmond A (2013) Chapter 11 Biological principles of mass cultivation of photoautotrophic microalgae. In: Richmond A, Hu Q(eds) Handbook of microalgal culture: applied phycology and biotechnology, Second Edition. John Wiley & Sons (Publisher), Scholar
  57. Ruzich NI, Bassi AS (2010) Investigation of lipase-catalyzed biodiesel production using ionic liquid [BMIM][PF6] as a co-solvent in 500 mL jacketed conical and shake flask reactors using triolein or waste canola oil as substrates. Energy Fuels 24(5):3214–3222CrossRefGoogle Scholar
  58. Schäfer AI, Fane AG, Waite TD (2005) Nanofiltration: principles and applications. Elsevier, OxfordGoogle Scholar
  59. Shahbaz K, Mjalli FS, Hashim M, Al-Nashef IM (2010) Using deep eutectic solvents for the removal of glycerol from palm oil-based biodiesel. J Appl Sci 10(24):3349–3354CrossRefGoogle Scholar
  60. Shahbaz K, Mjalli F, Hashim M, AlNashef I (2011a) Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Sep Purif Technol 81(2):216–222CrossRefGoogle Scholar
  61. Shahbaz K, Mjalli F, Hashim M, AlNashef I (2011b) Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy Fuels 25(6):2671–2678CrossRefGoogle Scholar
  62. Shahbaz K, Baroutian S, Mjalli FS, Hashim MA, AlNashef IM (2012) Prediction of glycerol removal from biodiesel using ammonium and phosphunium based deep eutectic solvents using artificial intelligence techniques. Chemom Intell Lab Syst 118:193–199CrossRefGoogle Scholar
  63. Shahid EM, Jamal Y (2011) Production of biodiesel: a technical review. Renew Sust Energ Rev 15(9):4732–4745CrossRefGoogle Scholar
  64. Siedlecka EM, Czerwicka M, Neumann J, Stepnowski P, Fernández J, Thöming J (2011) Ionic liquids: methods of degradation and recovery. In: Ionic liquids: theory, properties, new approaches. InTech, RijekaGoogle Scholar
  65. Sunitha S, Kanjilal S, Reddy P, Prasad R (2007) Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil. Biotechnol Lett 29(12):1881–1885CrossRefGoogle Scholar
  66. Tao L, Yuefeng D, Shucai G, Ji C (2010) Application of choline chloride· xZnCl2 ionic liquids for preparation of biodiesel. Chin J Chem Eng 18(2):322–327CrossRefGoogle Scholar
  67. Tommasi E, Cravotto G, Galletti P, Grillo G, Mazzotti M, Sacchetti G, Samorì C, Tabasso S, Tacchini M, Tagliavini E (2017) Enhanced and selective lipid extraction from the microalga P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatment. ACS Sustain Chem Eng 5(9):8316–8322CrossRefGoogle Scholar
  68. Troter DZ, Todorović ZB, Đokić-Stojanović DR, Stamenković OS, Veljković VB (2016) Application of ionic liquids and deep eutectic solvents in biodiesel production: a review. Renew Sust Energ Rev 61:473–500CrossRefGoogle Scholar
  69. Trujillo-Rodríguez MJ, Pino V, Anderson JL (2017) Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction. Talanta 172:86–94CrossRefGoogle Scholar
  70. Wang J, Liu Y, Zhou Z, Fu Y, Chang J (2017) Epoxidation of soybean oil catalyzed by deep eutectic solvents based on the choline chloride–carboxylic acid bifunctional catalytic system. Ind Eng Chem Res 56(29):8224–8234CrossRefGoogle Scholar
  71. Wazeer I, Hayyan M, Hadj-Kali MK (2018) Deep eutectic solvents: designer fluids for chemical processes. J Chem Technol Biotechnol 93(4):945–958CrossRefGoogle Scholar
  72. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084CrossRefGoogle Scholar
  73. Williamson ST, Shahbaz K, Mjalli FS, AlNashef IM, Farid MM (2017) Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol. Renew Energy 114:480–488CrossRefGoogle Scholar
  74. Wu Q, Chen H, Han M, Wang D, Wang J (2007) Transesterification of cottonseed oil catalyzed by Brønsted acidic ionic liquids. Ind Eng Chem Res 46(24):7955–7960CrossRefGoogle Scholar
  75. Wu B, Liu W, Zhang Y, Wang H (2009) Do we understand the recyclability of ionic liquids? Chem Eur J 15(8):1804–1810CrossRefGoogle Scholar
  76. Wu Z, Li Z, Wu G, Wang L, Lu S, Wang L, Wan H, Guan G (2014) Brønsted acidic ionic liquid modified magnetic nanoparticle: an efficient and green catalyst for biodiesel production. Ind Eng Chem Res 53(8):3040–3046CrossRefGoogle Scholar
  77. Yang H-Y, Lu W-J, Chen Y-C, Chen K-T, Teng J-C, Wan H-P (2017) New algal lipid extraction procedure using an amphiphilic amine solvent and ionic liquid. Biomass Bioenergy 100:108–115CrossRefGoogle Scholar
  78. Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72(1):118–121CrossRefGoogle Scholar
  79. Zhang L, Xian M, He Y, Li L, Yang J, Yu S, Xu X (2009) A Brønsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols. Bioresour Technol 100(19):4368–4373CrossRefGoogle Scholar
  80. Zhang Q, Vigier KDO, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41(21):7108–7146CrossRefGoogle Scholar
  81. Zhang Y, Xia X, Duan M, Han Y, Liu J, Luo M, Zhao C, Zu Y, Fu Y (2016) Green deep eutectic solvent assisted enzymatic preparation of biodiesel from yellow horn seed oil with microwave irradiation. J Mol Catal B Enzym 123:35–40CrossRefGoogle Scholar
  82. Zhang H, Li H, Pan H, Liu X, Yang K, Huang S, Yang S (2017) Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid. Energy Convers Manag 138:45–53CrossRefGoogle Scholar
  83. Zhao H, Baker GA (2013) Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. J Chem Technol Biotechnol 88(1):3–12CrossRefGoogle Scholar
  84. Zhao H, Baker GA, Holmes S (2011a) New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem 9(6):1908–1916CrossRefGoogle Scholar
  85. Zhao H, Baker GA, Holmes S (2011b) Protease activation in glycerol-based deep eutectic solvents. J Mol Catal B Enzym 72(3):163–167CrossRefGoogle Scholar
  86. Zhao H, Zhang C, Crittle TD (2013) Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J Mol Catal B Enzym 85:243–247CrossRefGoogle Scholar
  87. Zhou S, Liu L, Wang B, Xu F, Sun RC (2012) Biodiesel preparation from transesterification of glycerol trioleate catalyzed by basic ionic liquids. Chin Chem Lett 23(4):379–382CrossRefGoogle Scholar
  88. Zuo M, Le K, Li Z, Jiang Y, Zeng X, Tang X, Sun Y, Lin L (2017) Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Ind Crop Prod 99:1–6CrossRefGoogle Scholar
  89. Zuo M, Le K, Feng Y, Xiong C, Li Z, Zeng X, Tang X, Sun Y, Lin L (2018) An effective pathway for converting carbohydrates to biofuel 5-ethoxymethylfurfural via 5-hydroxymethylfurfural with deep eutectic solvents (DESs). Ind Crop Prod 112:18–23CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Chemical EngineeringKhalifa University of Science and Technology, Masdar City CampusAbu DhabiUnited Arab Emirates

Personalised recommendations