Biorefinery pp 153-165 | Cite as

Lignocellulosic Thermochemical Pretreatment Processes

  • Iwona CybulskaEmail author
  • Tanmay Chaturvedi
  • Mette Hedegaard Thomsen


Lignocellulosic biomass shows an enormous potential for being a biorefinery substrate, as it is complex, abundant, accessible, and inexpensive. Its complex structure is both an advantage providing an opportunity to produce energy and value-added chemicals and a disadvantage creating a need for additional pretreatment processing. Many pretreatment methods have been developed within the last century, and some of them have been significantly improved over the last decade. The most promising methods of lignocellulosic biomass pretreatment are hydrothermal treatment and organosolv fractionation, as these are the only thermochemical processes with proven commercial and environmental feasibility, still operating to this day. Therefore, these two processes have been discussed in this chapter to demonstrate the mechanisms of lignocellulose pretreatment.


Lignocellulose Thermochemical pretreatments Lignocellulosic biomass Hydrothermal pretreatment Organosolv pretreatment 


  1. Abdullah, B., Muhammad, S. A. F. A. S., & Mahmood, N. A. N. (2017). Production of biofuel via hydrogenation of lignin from biomass. In New Advances in Hydrogenation Processes-Fundamentals and Applications. InTech. Scholar
  2. Aita GM, Kim M (2010) Pretreatment technologies for the conversion of lignocellulosic materials to bioethanol. In: Eggleston G (ed) Sustainability of the sugar and sugar ethanol industries. American Chemical Society, Washington, p 117CrossRefGoogle Scholar
  3. Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725CrossRefGoogle Scholar
  4. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851CrossRefGoogle Scholar
  5. Anastas PT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  6. Antal MJ Jr, Mok WS, Richards GN (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. Carbohydr Res 199:91CrossRefGoogle Scholar
  7. Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. In: Davison BH, Evans BR, Finkelstein M, McMillan JD (eds) Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, New York, p 871CrossRefGoogle Scholar
  8. Baierl, S., Young, K. W., Young, R. A., & Timothy, R. (1987). Process for digesting lignocellulosic material. Biodyne Chemicals, Inc. European Patent Application. Appl. number EP19860305606.Google Scholar
  9. Cara C, Romero I, Oliva JM, Sáez F, Castro E (2007) Liquid hot water pretreatment of olive tree pruning residues. In: Mielenz JR, Klasson KT, Adney WS, McMillan JD (eds) Applied biochemistry and biotechnology. Humana Press, New York, p 379CrossRefGoogle Scholar
  10. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849Google Scholar
  11. Carvalheiro F, Silva-Fernandes T, Duarte LC, Girio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84CrossRefGoogle Scholar
  12. Chandra R, Bura R, Mabee W, Berlin A, Pan X, Saddler J (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L (ed) Biofuels. Springer, Berlin/Heidelberg, p 67CrossRefGoogle Scholar
  13. Chang M, Chou T, Tsao G (1981) Structure, pretreatment and hydrolysis of cellulose. In: Bioenergy. Springer, Berlin/Heidelberg, p 15CrossRefGoogle Scholar
  14. Chen X, Lawoko M, van Heiningen A (2010) Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour Technol 101:7812CrossRefGoogle Scholar
  15. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164CrossRefGoogle Scholar
  16. Cybulska I, Lei H, Julson J (2009) Hydrothermal pretreatment and enzymatic hydrolysis of prairie cord grass. Energy Fuel 24:718CrossRefGoogle Scholar
  17. Cybulska I, Brudecki GP, Zembrzuska J, Schmidt JE, Lopez CG-B, Thomsen MH (2017) Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates. Appl Energy 185:1040CrossRefGoogle Scholar
  18. Fang C, Schmidt JE, Cybulska I, Brudecki GP, Frankær CG, Thomsen MH (2015) Hydrothermal pretreatment of date palm (Phoenix dactylifera L.) leaflets and rachis to enhance enzymatic digestibility and bioethanol potential. BioMed Res Int 2015:216454Google Scholar
  19. Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202CrossRefGoogle Scholar
  20. Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3:155CrossRefGoogle Scholar
  21. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10CrossRefGoogle Scholar
  22. Kohlmann K, Westgate P, Weil J, Ladisch MR (1993) Biological based systems for waste processing. In: ICES meetingGoogle Scholar
  23. Kosarie N, Sukan-Vardar F, Pieper HJ, Senn T (2001) The biotechnology of ethanol. Classical and future applications. Wiley-VCH Verlag GmbH, WienGoogle Scholar
  24. Ladisch MR, Lin KW, Voloch M, Tsao GT (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzym Microb Technol 5:82CrossRefGoogle Scholar
  25. Larsen J, Østergaard Petersen M, Thirup L, Wen Li H, Krogh Iversen F (2008) The IBUS process—lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31:765CrossRefGoogle Scholar
  26. Lee YY (2000) Enhancement of dilute-acid total-hydrolysis process for high-yield saccharification of cellulosic biomass. Department of Chemical Engineering. Auburn University, AuburnCrossRefGoogle Scholar
  27. Lei H, Hennessey K, Liu Y, Lin X, Wan Y, Ruan R (2008) Optimization of hydrothermal pretreatment of corn stover. In: ASABE annual international meeting, ProvidenceGoogle Scholar
  28. Mackie KL, Brownell HH, West KL, Saddler JN (1985) Effect of sulphur dioxide and sulphuric acid on steam explosion of aspenwood. J Wood Chem Technol 5:405–425CrossRefGoogle Scholar
  29. Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157CrossRefGoogle Scholar
  30. Moreira L (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165CrossRefGoogle Scholar
  31. Morjanoff PJ, Gray PP (1987) Optimization of steam explosion as a method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification. Biotechnol Bioeng 29:733–741CrossRefGoogle Scholar
  32. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673CrossRefGoogle Scholar
  33. Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabanas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105–108:87CrossRefGoogle Scholar
  34. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1:32CrossRefGoogle Scholar
  35. Salapa I, Katsimpouras C, Topakas E, Sidiras D (2017) Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass Bioenergy 100:10CrossRefGoogle Scholar
  36. Schell DJ, Farmer J, Newman M, McMillan JD (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol 105–108:69CrossRefGoogle Scholar
  37. Schutyser W, Van den Bosch S, Dijkmans J, Turner S, Meledina M, Van Tendeloo G et al (2015a) Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks. ChemSusChem 8:1805CrossRefGoogle Scholar
  38. Schutyser W, Van den Bosch S, Renders T, De Boe T, Koelewijn S-F, Dewaele A et al (2015b) Influence of bio-based solvents on the catalytic reductive fractionation of birch wood. Green Chem 17:5035CrossRefGoogle Scholar
  39. Schutyser W, Van den Bossche G, Raaffels A, Van den Bosch S, Koelewijn S-F, Renders T et al (2016) Selective conversion of lignin-derivable 4-alkylguaiacols to 4-alkylcyclohexanols over noble and non-noble-metal catalysts. ACS Sustain Chem Eng 4:5336CrossRefGoogle Scholar
  40. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  41. Torres, A. I., Cybulska, I., Fang, C. J., Thomsen, M. H., Schmidt, J. E., & Stephanopoulos, G. (2015) A novel approach for the identification of economic opportunities within the framework of a biorefinery. Comput Aided Chem Eng 37:1175–1180. Elsevier.Google Scholar
  42. Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn S-F, Renders T et al (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8:1748CrossRefGoogle Scholar
  43. Van den Bosch S, Renders T, Kennis S, Koelewijn S-F, Van den Bossche G, Vangeel T et al (2017) Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation. Green Chem 19:3313CrossRefGoogle Scholar
  44. Verboekend D, Liao Y, Schutyser W, Sels BF (2016) Alkylphenols to phenol and olefins by zeolite catalysis: a pathway to valorize raw and fossilized lignocellulose. Green Chem 18:297CrossRefGoogle Scholar
  45. Vinardell MP, Mitjans M (2017) Lignins and their derivatives with beneficial effects on human health. Int J Mol Sci 18:1219CrossRefGoogle Scholar
  46. Walch E, Zemann A, Schinner F, Bonn G, Bobleter O (1992) Enzymatic saccharification of hemicellulose obtained from hydrothermally pretreated sugar cane bagasse and beech bark. Bioresour Technol 39:173CrossRefGoogle Scholar
  47. Weil J, Sarikaya A, Rau SL, Goetz J, Ladisch CM, Brewer M et al (1997) Pretreatment of yellow poplar sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21CrossRefGoogle Scholar
  48. Weil J, Sarikaya A, Rau S-L, Goetz J, Ladisch C, Brewer M et al (1998) Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol 73:1CrossRefGoogle Scholar
  49. Wyman CE (1996) Handbook on bioethanol. Production and utilization. Taylor & Francis, WashingtonGoogle Scholar
  50. Young RA (1998) Environmentally friendly technologies for the pulp and paper industry. Wiley, New YorkGoogle Scholar
  51. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815CrossRefGoogle Scholar
  52. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iwona Cybulska
    • 1
    Email author
  • Tanmay Chaturvedi
    • 2
  • Mette Hedegaard Thomsen
    • 2
  1. 1.Faculty of Bioscience Engineering, Earth and Life InstituteUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Energy TechnologyAalborg UniversityEsbjergDenmark

Personalised recommendations