Biorefinery pp 375-412 | Cite as

The Future Perspectives of Dark Fermentation: Moving from Only Biohydrogen to Biochemicals

  • Juan-Rodrigo Bastidas-OyanedelEmail author
  • Fabian Bonk
  • Mette Hedegaard Thomsen
  • Jens Ejbye Schmidt


Dark fermentation, also known as acidogenesis, involves the transformation of a wide range of organic substrates into a mixture of products, e.g., acetic acid, butyric acid, and hydrogen. This bioprocess occurs in the absence of oxygen and light. The ability to synthesize hydrogen, by dark fermentation, has raised its scientific attention. Hydrogen is a nonpolluting energy carrier molecule. However, for energy generation, there are a variety of other sustainable, and less expensive, alternatives to biohydrogen energy, e.g., solar, wind, tide, hydroelectric, biomass incineration, or nuclear fission. Nevertheless, dark fermentation appears as an important sustainable process in another area: the synthesis of valuable chemicals, i.e., an alternative to petrochemical refinery. Currently, acetic acid, butyric acid, and hydrogen are mostly produced by petrochemical reforming, and they serve as precursors of ubiquitous petrochemical-derived products. Hence, the future of dark fermentation relies as a core bioprocess in the biorefinery concept. The present article aims to present and discuss the current and future status of dark fermentation in the biorefinery concept. The first half of the article presents the metabolic pathways, product yields and its technological importance, microorganisms responsible for mixed dark fermentation, and operational parameters, e.g., substrates, pH, temperature, and headspace composition, which affect dark fermentation. The minimal selling price of dark fermentation products is also presented in this section. The second half discusses the perspectives and future of dark fermentation as a core bioprocess. The relationship of dark fermentation with other (bio)processes, e.g., liquid fuels and fine chemicals, algae cultivation, biomethane-biohythane-biosyngas production, and syngas fermentation, is then explored.


Dark fermentation Biorefinery Bioprocesses Revenues Acidogenesis Biohydrogen Economics 


  1. Aceves-Lara CA, Latrille E, Bernet N, Buffiere P, Steyer JP (2008a) A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses. Water Res 42:2539–2550CrossRefGoogle Scholar
  2. Aceves-Lara CA, Latrille E, Buffiere P, Bernet N, Steyer JP (2008b) Experimental determination by principal component analysis of a reaction pathway of biohydrogen production by anaerobic fermentation. Chem Eng Process Process Intensif 47:1968–1975CrossRefGoogle Scholar
  3. Aceves-Lara CA, Trably E, Bastidas-Oyanedel JR, Ramirez I, Latrille E, Steyer JP (2008c) Bioenergy production from waste: examples of biomethane and biohydrogen. J Soc Biol 202:177–189CrossRefGoogle Scholar
  4. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproducts conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78CrossRefGoogle Scholar
  5. Agler MT, Spirito CM, Usack JG, Werner JJ, Angenent LT (2012) Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ Sci 5:8189–8192CrossRefGoogle Scholar
  6. Agreda VH, Zoeller JR (1993) Acetic acid and its derivatives. Marcel Dekker, Inc, New YorkGoogle Scholar
  7. Ahmed I, Nipattummakul N, Gupta A (2011) Characteristics of syngas from co-gasification of polyethylene and woodchips. Appl Energy 88:165–174CrossRefGoogle Scholar
  8. Aikantechnology (2015) Aikan technology, how it works, batch processing. Accessed 12 June 2015
  9. Alibaba (2014) Chinese e-commerce. Organic chemical bulk prices. Accessed 24 Nov 2014
  10. Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840CrossRefGoogle Scholar
  11. Anastas P, Bartlett L, Kirchhoff M, Williamson T (2000) The role of catalysis in the design, development, and implementation of green chemistry. Catal Today 55:11–22CrossRefGoogle Scholar
  12. Anastas P, Kirchhoff M, Williamson T (2001) Catalysis as a foundational pillar of green chemistry. Appl Catal A-Gen 221:3–13CrossRefGoogle Scholar
  13. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Dominguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485CrossRefGoogle Scholar
  14. Arena U (2012) Process and technological aspects of municipal solid waste gasification: a review. Waste Manag 32:625–639CrossRefGoogle Scholar
  15. Argun H, Kargi F, Kapdan I (2009) Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photofermentation. Int J Hydrog Energy 34:6181–6188CrossRefGoogle Scholar
  16. Bastidas-Oyandel JR, Schmidt JE (2018) Increasing profits in food waste biorefinery – a techno-economic analysis. Energies 11(6):1151. Scholar
  17. Bastidas-Oyanedel JR, Aceves-Lara CA, Ruiz-Filippi G, Steyer JP (2008) Thermodynamic analysis of energy transfer in acidogenic cultures. Eng Life Sci 8:487–498CrossRefGoogle Scholar
  18. Bastidas-Oyanedel JR, Mohd-Zaki Z, Zeng RJ, Bernet N, Pratt S, Steyer JP et al (2012) Gas controlled hydrogen fermentation. Bioresour Technol 110:503–509CrossRefGoogle Scholar
  19. Bastidas-Oyanedel JR, Bonk F, Thomsen MH, Schmidt JE (2015) Dark Fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Biotechnol 14:473–498CrossRefGoogle Scholar
  20. Berry GD, Aceves SM (2005) The case of hydrogen in a carbon constrained world. J Energ Resour ASME 127:189–194CrossRefGoogle Scholar
  21. Bezerra R, Matsudo M, Sato S, Converti A, de Carvalho J (2013) Fed-Batch Cultivation of Arthrospira platensis using carbon dioxide from alcoholic fermentation and urea as carbon and nitrogen sources. Bioenergy Res 6:1118–1125CrossRefGoogle Scholar
  22. Bhatnagar A, Chinnasamy S, Singh M, Das K (2001) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431CrossRefGoogle Scholar
  23. Bonk F, Bastidas-Oyanedel JR, Schmidt JE (2015) Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation—economic and energy assessment. Waste Manag 40:82–91CrossRefGoogle Scholar
  24. Bonk F, Bastidas-Oyanedel JR, Yousef AF, Schmidt JE (2017) Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. Bioresour Technol 238:416–424CrossRefGoogle Scholar
  25. Borowitzka M, Moheimani N (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 18:13–25CrossRefGoogle Scholar
  26. Bossel U (2006) Does a hydrogen economy make sense? Proc IEEE 94:1826–1837CrossRefGoogle Scholar
  27. Boucher S (2006) La revolution de l’hydrogene, vers une energie propre et performante? Editions du Felin, France, ParisGoogle Scholar
  28. Bui L, Luo H, Gunther W, Roman-Leshkov Y (2013) Domino reaction catalyzed by zeolites with Bronsted and Lewis acid sites for the production of gamma-valerolactone from furfural. Angew Chem Int Ed 52:8022–8025CrossRefGoogle Scholar
  29. Burkholder J, Glibert P, Skelton H (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93CrossRefGoogle Scholar
  30. Cai G, Jin B, Monis P, Saint C (2011) Metabolic flux network and analysis of fermentative hydrogen production. Biotech Adv 29:375–387CrossRefGoogle Scholar
  31. Cai J, Wang G, Pan G (2012) Hydrogen production form butyrate by a marine mixed phototrophic bacterial consort. Int J Hydrog Energy 37:4057–4067CrossRefGoogle Scholar
  32. Canani R, Di Constanzo M, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528CrossRefGoogle Scholar
  33. Canani R, Di Constanzo M, Leone L (2012) The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics 4, 4CrossRefGoogle Scholar
  34. Cardozo K, Guaratini T, Barros M, Falcao V, Tonon A, Lopes N et al (2007) Metabolites from algae with economical impact. Comp Biochem Phys C 146:60–78CrossRefGoogle Scholar
  35. Cavinato C, Bolzonella D, Fatone F, Cecchi F, Pavan P (2011) Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour Technol 102:8605–8611CrossRefGoogle Scholar
  36. Cavinato C, Giuliano A, Bolzonella D, Pavan P, Cecchi F (2012) Biohythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int J Hydrog Energy 37:11548–11555CrossRefGoogle Scholar
  37. ccminternational (2012) China’s L-arginine industry enjoys rapid development. Accessed 25 Nov 2014Google Scholar
  38. Chaturvedi T (2013) Evaluation of bioenergy production from lignocellulosic biomass of Salicornia Bigelovii. MSc, Chemical Engineering, Masdar Institute of Science and Technology, Abu Dhabi, UAEGoogle Scholar
  39. Chen CC, Lin CY (2001) Start-up of anaerobic hydrogen producing reactors seeded with sewage sludge. Acta Biotechnol 21:371–379MathSciNetCrossRefGoogle Scholar
  40. Chen CC, Lin CY, Lin M (2002) Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58:224–228CrossRefGoogle Scholar
  41. Cheze B, Gastineau P, Chevallier J (2011) Forecasting world and regional aviation jet fuel demands to the mid-term (2025). Energ Policy 39:5147–5158CrossRefGoogle Scholar
  42. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  43. Choi K, Jeon B, Kim B, Oh M, Um Y, Sang B (2013) Insitu biphasic extractive fermentation for hexanoic acid production from sucrose by megasphaera elsdenii NCIMB 702410. Appl Biochem Biotechnol 171:1094–1107CrossRefGoogle Scholar
  44. Chong ML, Sabaratnam V, Shirai Y, Hassan MA (2009) Bio-hydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34:3277–3287CrossRefGoogle Scholar
  45. Chu CY, Sen B, Lay CH, Lin YC, Lin CY (2012) Direct Fermentation of sweet potato to produce maximal hydrogen and ethanol. Appl Energy 100:10–18CrossRefGoogle Scholar
  46. Chuang S (2012) Conversion of syngas to fuels. Handbook of climate change mitigation. Springer, BerlinGoogle Scholar
  47. Chung I, Beardall J, Mehta S, Sahoo D, Stojkovic S (2011) Using marine macroalgae for carbon sequestration: a critical appraisal. J Appl Phycol 23:877–886CrossRefGoogle Scholar
  48. Clarke WP, Alibardi L (2010) Anaerobic digestion for the treatment of solid organic waste: what’s hot and what’s not. Waste Manag 30:1761–1762CrossRefGoogle Scholar
  49. Colin T, Bories A, Sire Y, Perrin R (2005) Treatment and valorisation of winery wastewater by a new biophysical process (ECCFÒ). Water Sci Technol 51:99–106CrossRefGoogle Scholar
  50. Collet C, Girbal L, Peringer P, Schwitzguebel JP, Soucaille P (2006) Metabolism of lactose by Clostridium thermolacticum growing in continuous culture. Arch Microbiol 185:331–339CrossRefGoogle Scholar
  51. Cornils B (1999) Bulk and fine chemicals via aqueous biphasic catalysis. J Mol Catal A Chem 143:1–10CrossRefGoogle Scholar
  52. Davies O, Lewis A, Whitaker M, Tai H, Shakesheff K, Howdle S (2008) Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv Drug Deliver Rev 60:373–387CrossRefGoogle Scholar
  53. Demain A (2007) The business of biotechnology. Ind Biotechnol 3:269–283CrossRefGoogle Scholar
  54. Demirbas A (2002) Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Manag 43:2349–2356CrossRefGoogle Scholar
  55. Dhamankar H, Prather K (2011) Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals. Curr Opin Struct Biol 21:488–494CrossRefGoogle Scholar
  56. Dry M (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71:227–241CrossRefGoogle Scholar
  57. Dwidar M, Park JY, Mitchell RJ, Sang BI (2012) The future of butyric acid in industry. Scientific World J. Scholar
  58. Eggeman T, Verser D (2005) Recovery of organic acids from fermentation broths. Appl Biochem Biotechnol 121–124:605–618CrossRefGoogle Scholar
  59. Ennis BM, Marshall CT, Maddox IS, Paterson AHJ (1986) Continuous product recovery by in situ gas stripping/condensation during solvent production from whey permeate using Clostridium acetobutylicum. Biotechnol Lett 8:725–730CrossRefGoogle Scholar
  60. Ezeji TC, Karcher PM (2005) Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess Biosyst Eng 27:207–214CrossRefGoogle Scholar
  61. Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603CrossRefGoogle Scholar
  62. Fang HHP, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82:87–93CrossRefGoogle Scholar
  63. Fasahati P, Liu J (2014) Techno-economic analysis of production and recovery of volatile fatty acids from brown algae using membrane distillation. Comput Aided Chem Eng 34:303–308CrossRefGoogle Scholar
  64. Ford W (2001) Catalysis by colloidal polymers in aqueous media. React Funct Polym 48:3–13CrossRefGoogle Scholar
  65. Freudenberger R (2009) A guide to small-scale ethanol, alcohol fuel, making and using ethanol as a renewable fuel. New Society Publishers, Gabriola IslandGoogle Scholar
  66. Gaertner C, Serrano-Ruiz J, Braden D, Dumesic J (2009) Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. J Catal 266:71–78CrossRefGoogle Scholar
  67. Gallezot P (2007) Catalytic routes from renewables to fine chemicals. Catal Today 121:76–91CrossRefGoogle Scholar
  68. Geerlings J, Wilson J, Kramer G, Kuipers H, Hoek A, Huisman H (1999) Fischer-Tropsch technology—from active site to commercial process. Appl Catal A Gen 186:27–40CrossRefGoogle Scholar
  69. Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, HobokenCrossRefGoogle Scholar
  70. Gheshlaghi R, Scharer JM, Moo-Young M, Chou CP (2009) Metabolic pathways of clostridia for producing butanol. Biotechnol Adv 27:764–781CrossRefGoogle Scholar
  71. Gomez X, Moran A, Cuetos MJ, Sanchez ME (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. J Power Sources 157:727–732CrossRefGoogle Scholar
  72. Gonzalez-Cabaleiro R, Lema JM, Rodriguez J (2015) Metabolic energy-based modeling explains product yielding in anaerobic mixed culture fermentations. PLoS One. Scholar
  73. Grand View Research (2014) Global lactic acids and polylactic acid market. Accessed 24 Nov 2014
  74. Granda C, Holtzapple M, Luce G, Searcy K, Mamrosh D (2009) Carboxylate platform: the MixAlco process part 2: process economics. Appl Biochem Biotechnol 156:107–124CrossRefGoogle Scholar
  75. Groot WJ, van der Lans RGJM, Luyben KCAM (1989) Batch and continuous butanol fermentations with free cells: integration with product recovery by gas-stripping. Appl Microbiol Biotechnol 32:305–308CrossRefGoogle Scholar
  76. Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167CrossRefGoogle Scholar
  77. Guo XM, Trably E, Latrille E, Carrere H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673CrossRefGoogle Scholar
  78. Hadipour A, Sohrabi M (2008) Synthesis of some bifunctional catalysts and determination of kinetic parameters for direct conversion of syngas to dimethyl ether. Chem Eng J 137:294–301CrossRefGoogle Scholar
  79. Hafez H, Naggar MHE, Nakhla G (2010) Steady-state and dynamic modeling of biohydrogen production in an integrated biohydrogen reactor clarifier system. Int J Hydrog Energy 35:6634–6645CrossRefGoogle Scholar
  80. Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29CrossRefGoogle Scholar
  81. Hallenbeck P (2009) Fermentative hydrogen production: principles, progress and prognosis. Int J Hydrog Energy 34:7379–7389CrossRefGoogle Scholar
  82. Hamer H, Jonkers D, Venema K, Vanhoutvin S, Troost F, Brummer R (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119CrossRefGoogle Scholar
  83. Han SK, Shin HS (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrog Energy 29:567–577Google Scholar
  84. Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrog Energy 27:1339–1347CrossRefGoogle Scholar
  85. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32:172–184CrossRefGoogle Scholar
  86. Heiskanen H, Virkajarvi I, Viikari L (2007) The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzym Microb Technol 41:362–367CrossRefGoogle Scholar
  87. Henstra A, Sipma J, Rinzema A, Stams A (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206CrossRefGoogle Scholar
  88. Hoffmann P (2001) Tomorrow’s energy, hydrogen, fuel cells, and the prospects for a cleaner planet. The MIT Press, CambridgeCrossRefGoogle Scholar
  89. Hu W, Sin S, Chua H, Yu P (2005) Synthesis of polyhydroxyalkanoate (PHA) from excess activated sludge under various oxidation-reduction potentials (ORP) by using acetate and propionate as carbon sources. Appl Biochem Biotechnol 121–124:289–301CrossRefGoogle Scholar
  90. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84:619–626CrossRefGoogle Scholar
  91. Hwang MH, Jang NJ, Hyun SH, Kim IS (2004) Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J Biotechnol 111:297–309CrossRefGoogle Scholar
  92. Im WT, Kim DH, Kim KH, Kim MS (2012) Bacterial community analyses by pyrosequencing in dark fermentative H2-producing reactor using organic wastes as a feedstock. Int J Hydrog Energy 37:8330–8337CrossRefGoogle Scholar
  93. Indexmundi (2014) International prices of commodities. Accessed 24 Nov 2014
  94. Insam H, Franke-Whittle I, Goberna M (2010) Microbes at work, from wastes to resources. Springer, BerlinCrossRefGoogle Scholar
  95. Jang E, Jung M, Min D (2005) Hydrogenation of low trans and high conjugated fatty acids. Compr Rev Food Sci Food Saf 1:22–30CrossRefGoogle Scholar
  96. Jeon Y, Cho C, Yun Y (2006) Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzym Microb Technol 39:490–495CrossRefGoogle Scholar
  97. Jeon B, Kim B, Um Y, Sang B (2010) Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1. Appl Microbiol Biotechnol 88:1161–1167CrossRefGoogle Scholar
  98. Jeon B, Moon C, Kim B, Kim H, Um Y, Sang B (2013) In situ extractive fermentation for the production of hexanoic acid from galactitol by Clostridium sp. BS-1. Enzym Microb Technol 53:143–151CrossRefGoogle Scholar
  99. Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour Technol 143:525–530CrossRefGoogle Scholar
  100. Joo F (2008) Breakthroughs in hydrogen storage—formic acid as a sustainable storage material for hydrogen. Chem Sus Chem 1:805–808CrossRefGoogle Scholar
  101. Jung K, Kim D, Shin H (2011a) A simple method to reduce the start-up in a H2-producing UASB reactor. Int J Hydrog Energy 36:1466–1473CrossRefGoogle Scholar
  102. Jung K, Kim D, Shin H (2011b) Bioreactor design for continuous dark fermentative hydrogen production. Bioresour Technol 102:8612–8620CrossRefGoogle Scholar
  103. Kamm B, Gruber PR, Kamm M (2006) Biorefineries—industrial processes and products. Wiley-VCH, WeinheimGoogle Scholar
  104. Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568CrossRefGoogle Scholar
  105. Karadag D, Puhakka J (2010) Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor. Int J Hydrog Energy 35:10954–10959CrossRefGoogle Scholar
  106. Karlsson A, Vallin L, Ejlertsson J (2008) Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrog Energy 33:953–962CrossRefGoogle Scholar
  107. Kenealy W, Cao Y, Weimer P (1995) Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol. Appl Microbiol Biotechnol 44:507–513CrossRefGoogle Scholar
  108. Khardenavis A, Wang J, Ng W, Purohit H (2013) Management of various organic fractions of municipal solid waste via recourse to VFA and biogas generation. Environ Technol 34:2085–2097CrossRefGoogle Scholar
  109. Kim I, Hwang MH, Jang NJ, Hyun SH, Lee S (2004) Effect of low pH on the activity of hydrogen utilizing methanogen in biohydrogen process. Int J Hydrog Energy 29:1133–1140Google Scholar
  110. Kim M, Baek J, Yun Y, Sim S, Park S, Kim S (2006) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int J Hydrog Energy 31:812–816CrossRefGoogle Scholar
  111. Kim H, Leeds P, Chuang D (2009) The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem 110:1226–1240CrossRefGoogle Scholar
  112. Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873Google Scholar
  113. Kraemer JT (2004) Effects of methanogenic effluent recycle on fermentative hydrogen production. PhD Thesis, University of Toronto, Toronto, CanadaGoogle Scholar
  114. Kumar K, Dasgupta C, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953CrossRefGoogle Scholar
  115. Kurzynski M (2006) The thermodynamic machinery of life. Springer, LeipzigGoogle Scholar
  116. Kwan TH, Hu Y, Lin CSK (2016) Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota. Bioresour Technol 217:129–136CrossRefGoogle Scholar
  117. Ladygina N, Dedyukhina E, Vainshtein M (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1004CrossRefGoogle Scholar
  118. Lay JJ (2001) Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:280–287CrossRefGoogle Scholar
  119. Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33:2579–2586CrossRefGoogle Scholar
  120. Lee D, Li Y, Noike T, Cha G (2008) Behaviour of extracellular polymers and bio-fouling during hydrogen fermentation with a membrane bioreactor. J Memb Sci 322:13–18CrossRefGoogle Scholar
  121. Lee D, Li Y, Noike T (2010) Influence of solids retention time on continuous H2 production using membrane bioreactor. Int J Hydrog Energy 35:52–60CrossRefGoogle Scholar
  122. Leung A, Boocock D, Konar S (1995) Pathway for the catalytic conversion of carboxylic acids to hydrocarbons over activated alumina. Energy Fuel 9:913–920CrossRefGoogle Scholar
  123. Leyva M, Vicedo B, Finiti I, Flors V, Del Amo G, Real M et al (2008) Preventive and post-infection control of Botrytis cinerea in tomato plants by hexanoic acid. Plant Pathol 57:1038–1046CrossRefGoogle Scholar
  124. Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39MathSciNetCrossRefGoogle Scholar
  125. Li W, Yu H (2011) From wastewater to bioenergy and bio-chemicals via two-stage bioconversion processes: a future paradigm. Biotechnol Adv 29:972–982CrossRefGoogle Scholar
  126. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049CrossRefGoogle Scholar
  127. Lin CY, Chang RC (2004) Fermentative hydrogen production at ambient temperature. Int J Hydrog Energy 29:715–720CrossRefGoogle Scholar
  128. Lin CY, Lay CH (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrog Energy 29:41–45CrossRefGoogle Scholar
  129. Lin CY, Lay CH (2005) A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrog Energy 30:285–292CrossRefGoogle Scholar
  130. Lindblad MS, Liu Y, Albertsson AC, Ranucci E, Karlsson S (2002) Polymers from renewable resources. In: Albertsson AC (ed) Degradable aliphatic polyesters. Springer, Berlin, pp 139–161CrossRefGoogle Scholar
  131. Liu WT, Chan OC, Fang HHP (2002) Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res 36:3203–3210CrossRefGoogle Scholar
  132. Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236CrossRefGoogle Scholar
  133. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8CrossRefGoogle Scholar
  134. Maddox IS, Qureshi N, Roberts-Thomson K (1995) Production of acetone-butanol-ethanol from concentrated substrates using Clostridium acetobutylicum in an integrated fermentation-product removal process. Process Biochem 30:209–215Google Scholar
  135. Magid J (2006) Short-Circuit short circuiting the carbon and nutrient cycles between urban and rural districts by establishing three new systems for source separation, collection and composting of organic waste in the greater Copenhagen area. Final report presented to the EU-life program. Accessed 21 June 2015
  136. Marinoiu A, Cobzaru C, Carcadea E, Capris C, Tanislav V, Raceanu M (2013) Hydrogenolysis of glycerol to propylene glycol using heterogeneous catalysis in basic aqueous solutions. React Kinet Mech Catal 110:63–73CrossRefGoogle Scholar
  137. Market Publishers (2012) Global n-butanol market to reach 4 Mt by 2020. Accessed 24 Nov 2014
  138. Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401CrossRefGoogle Scholar
  139. McKendry P (2002a) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54CrossRefGoogle Scholar
  140. McKendry P (2002b) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63CrossRefGoogle Scholar
  141. Mecking S, Held A, Bauers F (2002) Aqueous catalytic polymerization of olefins. Angew Chem Int Ed 41:544–561CrossRefGoogle Scholar
  142. Mitchell R, Gu JD (2010) Environmental microbiology, 2nd edn. Wiley-Blackwell, HobokenGoogle Scholar
  143. Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65CrossRefGoogle Scholar
  144. Mohammadi M, Najafpour G, Younesi H, Lahijani P, Uzir M, Mohamed A (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sust Energ Rev 15:4255–4273CrossRefGoogle Scholar
  145. Mu Y, Zheng XJ, Yu HQ, Zhu R (2006) Biological hydrogen production by anaerobic sludge at various temperatures. Int J Hydrog Energy 31:780–785CrossRefGoogle Scholar
  146. Mu Y, Yu HQ, Wang G (2007) A kinetic approach to anaerobic hydrogen-producing process. Water Res 41:1152–1160CrossRefGoogle Scholar
  147. Munster M (2009) Energy systems analysis of waste to energy technologies by use of energyPLAN. Riso report, Danish Technical University. Accessed 12 June 2015
  148. Murzin D, Leino R (2008) Sustainable chemical technology through catalytic multistep reactions. Chem Eng Res Des 86:1002–1010CrossRefGoogle Scholar
  149. Murzin D, Simakova I (2011) Catalysis in biomass processing. Catal Ind 3:218–249CrossRefGoogle Scholar
  150. Mussatto SL, Dragone G, Guimaraes PMR, Silva JPA, Carneiro LM, Roberto IC et al (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830CrossRefGoogle Scholar
  151. Najdenski H, Gigova L, Illiev I, Pilarski P, Lukavsky J, Tsvetkova I et al (2013) Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 48:1533–1540CrossRefGoogle Scholar
  152. Nguyen CM, Choi GJ, Choi YH, Jang KS, Kim JC (2013) D- and L-lactic acid production from fresh sweet potato through simultaneous saccharification and fermentation. Biochem Eng J 81:40–46CrossRefGoogle Scholar
  153. Nielsen AT, Amandusson H, Bjorklund R, Dannentun H, Ejlertsson J, Ekedahl LG et al (2001) Hydrogen production from organic waste. Int J Hydrog Energy 26:547–550CrossRefGoogle Scholar
  154. Nishio N, Nakashimada Y (2007) Recent development of anaerobic digestion processes for energy recovery from wastes. J Biosci Bioeng 103:105–112CrossRefGoogle Scholar
  155. Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via drak fermentation: a review. Waste Biomass Valoriz 1:21–39CrossRefGoogle Scholar
  156. Nwobi A (2013) Techno-economic evaluation of biofuel production from organic fraction of municipal solid waste (OFMSW) generated in Abu Dhabi. MSc thesis, Masdar Institute of Science and Technology, Abu Dhabi, UAEGoogle Scholar
  157. Ogbonna J, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284CrossRefGoogle Scholar
  158. Oh S, Iyer P, Bruns M, Logan B (2004) Biological hydrogen production usig a membrane bioreactor. Biotechnol Bioeng 87:119–127CrossRefGoogle Scholar
  159. OPEC (2014) 2014 world oil outlook. Organization of the Petroleum Exporting Countries, ViennaGoogle Scholar
  160. Pauss A, Andre G, Perrier M, Guiot S (1990) Liquid-to-mass transfer in anaerobic processes: inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl Environ Microb 56:1636–1644Google Scholar
  161. Pavlostathis SG, Gossett JM (1988) Preliminary conversion mechanisms in anaerobic digestion of biological sludges. J Environ Eng 114:575–592CrossRefGoogle Scholar
  162. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384CrossRefGoogle Scholar
  163. Perrotta AR, Kumaraswany R, Bastidas-Oyanedel JR, Alm EJ, Rodriguez J (2017) Inoculum composition determines microbial community and function in an anaerobic sequential batch reactor. PLoS One 12(2):e0171369. Scholar
  164. Petkov G, Ivanova A, Iliev I, Vaseva I (2012) A critical look at the microalgae biodiesel. Eur J Lipid Sci Technol 114:103–111CrossRefGoogle Scholar
  165. Pinto F, Franco C, Andre R, Miranda M, Gulyurtlu I, Cabrita I (2002) Co-gasification study of biomass mixed with plastic wastes. Fuel 81:291–297CrossRefGoogle Scholar
  166. Pirie C, De Mey M, Prather K, Ajikumar P (2013) Integrating the protein and metabolic engineering tollkits for next-generation chemical biosynthesis. ACS Chem Biol 8:662–672CrossRefGoogle Scholar
  167. Porpatham E, Ramesh A, Nagalingam B (2007) Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. Int J Hydrog Energy 32:2057–2065CrossRefGoogle Scholar
  168. Prakasham RS, Sathish T, Brahmaiah P (2010) Biohydrogen production process optimization using anaerobic mixed consortia: a prelude study for use of agro-industrial material hydrolysate as substrate. Bioresour Technol 101:5708–5711CrossRefGoogle Scholar
  169. PRnewswire (2013) Global salicylic acid market is expected to reach USD 5212 million in 2019. Accessed 24 Nov 2014
  170. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648CrossRefGoogle Scholar
  171. Quemeneur M, Hamelin J, Guidici-Orticoni T, Latrille E, Steyer JP, Trably E (2011) Changes in hydrogenase genetic diversity and proteomic patterns in mixed-cultured dark fermentation of mono, di- and tri-saccharides. Int J Hydrog Energy 36:11654–11665CrossRefGoogle Scholar
  172. Queneau Y, Pinel C, Scherrmann M (2011) Some chemical transformations of carbohydrates in aqueous medium. C R Chim 14:688–699CrossRefGoogle Scholar
  173. Rajhi H, Conthe M, Puyol D, Diaz E, Sanz J (2013) Dark fermentation: isolation and characterization of hydrogen-producing strains from sludges. Int Microbiol 16:53–62Google Scholar
  174. Rashid K (2013) Prospects for algal biofuels in UAE: technology and economics. MSc Thesis Masdar Institute of Science and Technology, Abu Dhabi, UAEGoogle Scholar
  175. Reddy AKN, Williams RH, Johansson T (1997) Energy after Rio: prospects and challenges. United Nations Development Programme (UNDP), New YorkGoogle Scholar
  176. Redwood M, Paterson-Beedle M, Macaskie L (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149–185CrossRefGoogle Scholar
  177. Ren N, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060CrossRefGoogle Scholar
  178. REnescience (2015) Technology and services. Accessed 12 June 2015
  179. Rephaeli A, Zhuk R, Nudelman A (2000) Prodrugs of butyric acid from bench to bedside: synthetic design, mechanisms of action, and clinical applications. Drug Devlop Res 50:379–391CrossRefGoogle Scholar
  180. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89CrossRefGoogle Scholar
  181. Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Factories 11:115CrossRefGoogle Scholar
  182. Roddy D (2013) A syngas network for reducing industrial carbon footprint and energy use. Appl Therm Eng 53:299–304CrossRefGoogle Scholar
  183. Roehr M (2001) The biotechnology of ethanol, classical and future applications. Wiley-VCH verlag GmbH, WeinheimGoogle Scholar
  184. Rogers P, Chen J, Zidwick M (2006) Organic acid and solvent production. In: The Prokaryotes, 3rd edn. Springer, Berlin Heidelberg, pp, pp 511–755Google Scholar
  185. Romano AH, Conway T (1996) Evolution of carbohydrate metabolic pathways. Res Microbiol 147:448–455CrossRefGoogle Scholar
  186. Ruiz-Rodriguez A, Fornan T, Hernandez E, Senorans F, Reglero G (2010) Thermodynamic modeling of dealcoholization of beverages using supercritical CO2: application to wine samples. J Supercrit Fluid 52:183–188CrossRefGoogle Scholar
  187. Sahena F, Zaidul I, Jinap S, Karim A, Abbas K, Norulaini N et al (2009) Application of supercritical CO2 in lipid extraction—a review. J Food Eng 95:240–253CrossRefGoogle Scholar
  188. Sauer U, Santangelo J, Treuner A, Buchholz M, Durre P (1995) Sigma factor and sporulation genes in Clostridium. FEMS Microbiol Rev 17:331–340CrossRefGoogle Scholar
  189. Schink B, Kremer DR, Hansen TA (1987) Pathway of propionate formation from ethanol in Pelobacter propionicus. Arch Microbiol 147:321–327CrossRefGoogle Scholar
  190. Seeliger S, Janssen PH, Schink B (2006) Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiol Lett 211:65–70CrossRefGoogle Scholar
  191. Shi X, Yu H (2005) Optimization of volatile fatty acid compositions for hydrogen production by Rhodopseudomonas capsulata. J Chem Technol Biot 80:1198–1203CrossRefGoogle Scholar
  192. Shi X, Yu H (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int J Hydrog Energy 31:1641–1647CrossRefGoogle Scholar
  193. Shin HS, Younb JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrog Energy 29:1355–1363CrossRefGoogle Scholar
  194. Show K, Lee D, Chang J (2011) Bioreactor and process design for biohydrogen production. Bioresour Technol 102:8524–8533CrossRefGoogle Scholar
  195. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechol Adv 27:409–416CrossRefGoogle Scholar
  196. Sierens R, Rosseel E (2000) Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions. J Eng Gas Turb Power 122:135–140CrossRefGoogle Scholar
  197. Singh U, Ahluwalia A (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strateg Glob Change 18:73–95CrossRefGoogle Scholar
  198. Sossai P (2012) Butyric acid: what is the future for this old substance? Swiss Med Wkly 142:w13596Google Scholar
  199. Sparling R, Islam R, Cicek N, Carere C, Chow H, Levin DB (2006) Formate synthesis by Clostridium thermocellum during anaerobic fermentation. Can J Microbiol 52:681–688CrossRefGoogle Scholar
  200. Spivey J, Gangwal S, Zoeller JR, Winslow J, Srivastava RD (2000) Syngas conversion to fuels and chemicals. Catal Today 58:231CrossRefGoogle Scholar
  201. Sudesh K, Doi A (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555CrossRefGoogle Scholar
  202. Tanaka N, Kjorven O, Yumkella K (2010) Energy poverty, how to make modern energy access universal? International Energy Agency (IEA), United Nations Development Programme (UNDP), and United Nations Industrial Development Organization (UNIDO), ParisGoogle Scholar
  203. Tanisho S, Kuromoto M, Kadokura N (1998) Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrog Energy 23:559–563CrossRefGoogle Scholar
  204. Tawfik A, El-Qelish M (2012) Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor. Bioresour Technol 114:270–274CrossRefGoogle Scholar
  205. Temudo MF, Kleerebezem R, van Loosdrecht MCM (2007) Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study. Biotechnol Bioeng 98:69–79CrossRefGoogle Scholar
  206. Temudo MF, Muyzer G, Kleerebezem R, van Loosdrecht MCM (2008a) Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Appl Microbiol Biotechnol 80:1121–1130CrossRefGoogle Scholar
  207. Temudo MF, Poldermans R, Kleerebezem R, van Loosdrecht MCM (2008b) Glycerol fermentation by (open) mixed cultures: a chemostat study. Biotechnol Bioeng 100:1088–1098CrossRefGoogle Scholar
  208. Temudo MF, Mato T, Kleerebezem R, van Loosdrecht MCM (2009) Xylose anaerobic conversion by open-mixed cultures. Appl Microbiol Biotechnol 82:231–239CrossRefGoogle Scholar
  209. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180Google Scholar
  210. Tholozan JL, Touzel JP, Samain E, Grivet JP, Prensier G, Albagnac G (1992) Clostridium neopropionicum sp-nov a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway. Arch Microbiol 157:249–257CrossRefGoogle Scholar
  211. Tomasko D, Burley A, Feng L, Yeh S, Miyazono K, Nirmal-Kumar S et al (2009) Development of CO2 for polymer foam applications. J Supercrit Fluid 47:493–499CrossRefGoogle Scholar
  212. Tran N, Barlett J, Kannangara G, Milev A, Volk H, Wilson M (2010) Catalytic upgrading of biorefinery oil from microalgae. Fuel 89:265–274CrossRefGoogle Scholar
  213. Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M (1995) Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79:395–397CrossRefGoogle Scholar
  214. Uhm S, Chung ST, Lee J (2008) Characterization of direct formic acid fuel cells by impedance studies: in comparison of direct methanol fuel cells. J Power Sources 178:34–43CrossRefGoogle Scholar
  215. Uratani J (2013) Anerobic digestion of halophytic plant residues for biogas production and nutrient recovery. MSc Thesis, Masdar Institute of Science and Technology, Abu Dhabi, UAEGoogle Scholar
  216. Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80:603–629CrossRefGoogle Scholar
  217. Vanhoutvin S, Troost F, Kilkens T, Lindsey P, Hamer H, Jonkers D et al (2009) The effects of butyrate enemas on visceral perception in healthy volunteers. Neurogastroenterol Motil 21:952–e76CrossRefGoogle Scholar
  218. Vasudevan D, Richter H, Angenent L (2014) Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresour Technol 151:378–382CrossRefGoogle Scholar
  219. Waligorska M (2012) Fermentative hydrogen production— process design and bioreactors. Chem Process Eng 33:585–594CrossRefGoogle Scholar
  220. Wang Y, Mu Y, Yu HQ (2007) Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges. Int J Hydrog Energy 32:1086–1094CrossRefGoogle Scholar
  221. Wang S, Guo Z, Cai Q, Guo L (2012) Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production. Biomass Bioenergy 45:138–143CrossRefGoogle Scholar
  222. Weibel G, Ober C (2003) An overview of supercritical CO2 applications in microelectronics processing. Microelectron Eng 65:145–152CrossRefGoogle Scholar
  223. Weissermel K, Arpe HJ (1997) Industrial organic chemistry. VCH Publishers, New YorkCrossRefGoogle Scholar
  224. Wilhelm D, Simbeck D, Karp A, Dickenson R (2001) Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process Technol 71:139–148CrossRefGoogle Scholar
  225. Williams T, Shaddix C, Schefer R (2008) Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor. Combust Sci Technol 180:64–88CrossRefGoogle Scholar
  226. Willke T, Vorlop K (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142CrossRefGoogle Scholar
  227. Willquist K, Nkemba VN, Svensson H, Pawar S, Ljunggren M, Karlsson H et al (2012) Design of a novel biohythane process with high H2 and CH4 production rates. Int J Hydrog Energy 37:17749–17762CrossRefGoogle Scholar
  228. Ye N, Lu F, Shao L, Godon J, He P (2007) Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes. J Appl Microbiol 103:1055–1065CrossRefGoogle Scholar
  229. Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91:58–63CrossRefGoogle Scholar
  230. Yousuf A, Bastidas-Oyanedel JR, Schmidt JE (2018) Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. Waste Management, In Press, DOI. Scholar
  231. Zacharof M, Lovitt R (2013) Complex effluent streams as a potential source of volatile acids. Waste Biomass Valor 4:557–581CrossRefGoogle Scholar
  232. Zahedi S, Sales D, Romero L, Solera R (2013) Hydrogen production from the organic fraction of municipal solid waste: in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste. Bioresour Technol 129:85–91CrossRefGoogle Scholar
  233. Zeeshan N, Hinrich U (2014) Enhancing the hydrolysis process of a two-stage biogas technology for the organic fraction of municipal solid waste. In: Presented at the international conference on anaerobic digestion “BiogasScience 2014”, Vienna, AustriaGoogle Scholar
  234. Zehnder A, Svensson B (1986) Life without oxygen: what can and what cannot? Exp Dermatol 42:1197–1205Google Scholar
  235. Zhang Y (2014) Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol Adv. Scholar
  236. Zhang Y, Shen J (2006) Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int J Hydrog Energy 31:441–446CrossRefGoogle Scholar
  237. Zhang Z, Show K, Tay J, Liang D, Lee D, Jiang W (2007) Rapid formation of hydrogen producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation. Biotechnol Bioeng 96:1040–1050CrossRefGoogle Scholar
  238. Zhang C, Yang H, Yang F, Ma Y (2009) Current progress on butyric acid production by fermentation. Curr Microbiol 59:656–663CrossRefGoogle Scholar
  239. Zhang F, Zhang Y, Chen M, Zeng RJ (2012) Hydrogen super-saturation in thermophilic mixed culture fermentation. Int J Hydrog Energy 37:17809–17816CrossRefGoogle Scholar
  240. Zhang F, Ding J, Shen N, Zhang Y, Ding Z, Dai K et al (2013a) In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor. Appl Microbiol Biotechnol 97:10233–10240CrossRefGoogle Scholar
  241. Zhang F, Ding J, Zhang Y, Chen M, Ding ZW, van Loosdrecht MCM, Zeng RJ (2013b) Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res 47:6122–6129CrossRefGoogle Scholar
  242. Zhang F, Zhang Y, Chen M, van Loosdrecht MCM, Zeng RJ (2013c) A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy. Biotechnol Bioeng 110:1884–1894CrossRefGoogle Scholar
  243. Zhang F, Zhang Y, Ding Y, Dai K, van Loosdrecht MCM, Zeng RJ (2014) Stable acetate production in extreme-thermophilic (70 °C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens. Sci Rep.
  244. Zhao Y, Chen Y, Zhang D, Zhu X (2010) Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH. Environ Sci Technol 44:3317–3323CrossRefGoogle Scholar
  245. Zheng H, O’Sullivan C, Mereddy R, Zeng R, Duke M, Clarke W (2010) Experimental and theoretical investigation of diffusion process in membrane anaerobic reactor for bio-hydrogen production. Int J Hydrog Energy 35:5301–5311CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan-Rodrigo Bastidas-Oyanedel
    • 1
    Email author
  • Fabian Bonk
    • 2
  • Mette Hedegaard Thomsen
    • 3
  • Jens Ejbye Schmidt
    • 1
    • 4
  1. 1.Chemical Engineering DepartmentKhalifa University of Science and TechnologyAbu DhabiUnited Arab Emirates
  2. 2.Department of Environmental MicrobiologyUFZ-Helmholtz Centre for Environmental ResearchLeipzigGermany
  3. 3.Department of Energy TechnologyAalborg UniversityEsbjergDenmark
  4. 4.SDU-Department of Chemical Engineering, Biotechnology, and Environmental TechnologyUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations