Skip to main content

A Digital-to-Time-Converter-Based Subsampling PLL for Fractional Synthesis

  • Chapter
  • First Online:
Book cover Digital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 936 Accesses

Abstract

This chapter introduces an analog fractional-N subsampling PLL that relies on a digital-to-time (DTC) converter in the phase-error comparison path for fractional residue compensation. Since the DTC is put at the input of the system, its resolution, linearity, and phase noise performance introduce the bottleneck for the overall spectral purity. A high-efficiency, low-noise 10-bit DTC with 0.5 ps resolution is designed. Analog sensitivities of the circuit (such as DTC gain variation) are compensated in the digital domain. The prototype achieves a robust fractional lock across the range from 9.2 GHz to 12.7 GHz with less than 280-fs rms integrated jitter (in presence of the worst fractional spur). The total power consumption of the PLL is 13 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the skipping operation is possible thanks to the sinusoidal detection gain of the subsampling PLL, which repeats every T VCO.

  2. 2.

    A first-order Δ Σ generates modulation of only 1. This means that the DTC operates with delays of up to a single VCO period. A popular MASH 1-1-1 modulator has an output range of 7, which is reduced after some filtering in the phase accumulator.

  3. 3.

    PLL multiplication factor N is 250 in this example, and phase noise is multiplied by N 2 in transfer to the output (in PLL band).

  4. 4.

    For instance, the digital controller features a full lookup table of the DTC, which is built with 10k flip-flops. The LUT was programmed with a perfectly linear mapping. It was, therefore, not necessary.

References

  1. D. Auvergne, J.M. Daga, M. Rezzoug, Signal transition time effect on CMOS delay evaluation. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 47(9), 1362–1369 (2000)

    Article  Google Scholar 

  2. J. Borremans, K. Vengattaramane, V. Giannini, J. Craninckx, A 86 MHz-to-12 GHz digital-intensive phase-modulated fractional-N PLL using a 15 pJ/Shot 5 ps TDC in 40 nm digital CMOS, in 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). (IEEE, San Francisco, 2010), pp. 480–481

    Google Scholar 

  3. W.-S. Chang, P.-C. Huang, T.-C. Lee, A fractional-N divider-less phase-locked loop with a subsampling phase detector. IEEE J. Solid State Circuits 49(12), 2964–2975 (2014)

    Article  Google Scholar 

  4. V.K. Chillara, Y.-H. Liu, B. Wang, A. Ba, M. Vidojkovic, K. Philips, H. de Groot, R.B. Staszewski, 9.8 An 860 μW 2.1-to-2.7 GHz all-digital PLL-based frequency modulator with a DTC-assisted snapshot TDC for WPAN (Bluetooth Smart and ZigBee) applications, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). (IEEE, San Francisco, 2014), pp. 172–173

    Google Scholar 

  5. X. Gao, E. Klumperink, P. Geraedts, B. Nauta, Jitter analysis and a benchmarking figure-of-merit for phase-locked loops. IEEE Trans. Circuits Syst. Express Briefs 56(2), 117–121 (2009)

    Article  Google Scholar 

  6. X. Gao, E. Klumperink, M. Bohsali, B. Nauta, A Low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N 2. IEEE J. Solid State Circuits 44(12), 3253–3263 (2009)

    Article  Google Scholar 

  7. X. Gao, E. Klumperink, G. Socci, M. Bohsali, B. Nauta, Spur reduction techniques for phase-locked loops exploiting a sub-sampling phase detector. IEEE J. Solid State Circuits 45(9), 1809–1821 (2010)

    Article  Google Scholar 

  8. B. Hershberg, K. Raczkowski, K. Vaesen, J. Craninckx, A 9.1–12.7 GHz VCO in 28 nm CMOS with a bottom-pinning bias technique for digital varactor stress reduction, in ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC). (IEEE, Venice Lido, 2014), pp. 83–86

    Google Scholar 

  9. S. Levantino, L. Romanò, S. Pellerano, C. Samori, A. Lacaita, Phase noise in digital frequency dividers. IEEE J. Solid State Circuits 39(5), 775–784 (2004)

    Article  Google Scholar 

  10. S. Levantino, G. Marzin, C. Samori, A. Lacaita, A wideband fractional-N PLL with suppressed charge-pump noise and automatic loop filter calibration. IEEE J. Solid State Circuits 48(10), 2419–2429 (2013) [Online]. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6576220

    Article  Google Scholar 

  11. N. Markulic, K. Raczkowski, P. Wambacq, J. Craninckx, A 10-bit, 550-fs step Digital-to-Time Converter in 28 nm CMOS, in ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC). (IEEE, Venice Lido, 2014), pp. 79–82

    Google Scholar 

  12. G. Marucci, A. Fenaroli, G. Marzin, S. Levantino, C. Samori, A.L. Lacaita, 21.1 A 1.7 GHz MDLL-based fractional-N frequency synthesizer with 1.4 ps RMS integrated jitter and 3 mW power using a 1b TDC, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). (IEEE, San Francisco, 2014), pp. 360–361

    Google Scholar 

  13. G. Marucci, Techniques for high-efficiency digital frequency synthesis. PhD Thesis, Politecnico di Milano, Italy, 2015

    Google Scholar 

  14. G. Marzin, S. Levantino, C. Samori, A.L. Lacaita, “A 20 Mb/s phase modulator based on a 3.6 GHz digital PLL with − 36 dB EVM at 5 mW power. IEEE J. Solid State Circuits 47(12), 2974–2988 (2012)

    Article  Google Scholar 

  15. G. Marzin, S. Levantino, C. Samori, A.L. Lacaita, 2.9 A background calibration technique to control bandwidth in digital PLLs, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). (IEEE, San Francisco, 2014), pp. 54–55

    Google Scholar 

  16. N. Pavlovic, J. Bergervoet, A 5.3 GHz digital-to-time-converter-based fractional-N all-digital PLL, in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). (IEEE, San Francisco, 2011), pp. 54–56

    Google Scholar 

  17. K. Raczkowski, N. Markulic, B. Hershberg, J. Craninckx, A 9.2–12.7 GHz wideband fractional-N subsampling PLL in 28 nm CMOS with 280 fs RMS jitter. IEEE J. Solid State Circuits 50(5), 1203–1213 (2015)

    Article  Google Scholar 

  18. T.A. Riley, M.A. Copeland, T.A. Kwasniewski, Delta-sigma modulation in fractional-N frequency synthesis. IEEE J. Solid State Circuits 28(5), 553–559 (1993)

    Article  Google Scholar 

  19. J.Z. Ru, C. Palattella, P. Geraedts, E. Klumperink, B. Nauta, A high-linearity digital-to-time converter technique: constant-slope charging. IEEE J. Solid State Circuits 50(6), 1412–1423 (2015)

    Article  Google Scholar 

  20. R. Schreier, G.C. Temes, Understanding Delta-Sigma Data Converters, vol. 74. (IEEE Press, Piscataway, 2005)

    Google Scholar 

  21. H. Sjoland, Improved switched tuning of differential CMOS VCOs. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 49(5), 352–355 (2002)

    Article  Google Scholar 

  22. R.B. Staszewski, K. Muhammad, D. Leipold, C.-M. Hung, Y.-C. Ho, J.L. Wallberg, C. Fernando, K. Maggio, R. Staszewski, T. Jung et al, All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS. IEEE J. Solid State Circuits 39(12), 2278–2291 (2004)

    Article  Google Scholar 

  23. A. Swaminathan, K. Wang, I. Galton, A wide-bandwidth 2.4 GHz ISM band fractional-N PLL with adaptive phase noise cancellation. IEEE J. Solid State Circuits 42(12), 2639–2650 (2007)

    Article  Google Scholar 

  24. V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, P. Wambacq, 21.4 A 42 mW 230 fs-jitter sub-sampling 60 GHz PLL in 40 nm CMOS, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). (IEEE, San Francisco, 2014), pp. 366–367 [Online]. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6757472

  25. D. Tasca, M. Zanuso, G. Marzin, S. Levantino, C. Samori, A. Lacaita, A 2.9–4.0-GHz fractional-N digital PLL with bang-bang phase detector and 560-fs RMS integrated jitter at 4.5-mW power. IEEE J. Solid State Circuits 46(12), 2745–2758 (2011)

    Article  Google Scholar 

  26. E. Temporiti, C. Weltin-Wu, D. Baldi, M. Cusmai, F. Svelto, A 3.5 GHz wideband ADPLL with fractional spur suppression through TDC dithering and feedforward compensation. IEEE J. Solid State Circuits 45(12), 2723–2736 (2010)

    Google Scholar 

  27. C. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli, and Z. Wang, A family of low-power truly modular programmable dividers in standard 0.35-μm CMOS technology. IEEE J. Solid State Circuits 35(7), 1039–1045 (2000) [Online]. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=848214

    Article  Google Scholar 

  28. Y.-C. Yang, S.-A. Yu, Y.-H. Liu, T. Wang, S.-S. Lu, A Quantization noise suppression technique for Δ Σ fractional-N frequency synthesizers. IEEE J. Solid State Circuits 41(11), 2500–2511 (2006)

    Article  Google Scholar 

  29. C.-W. Yao, L. Lin, B. Nissim, H. Arora, T. Cho, A low spur fractional-N digital PLL for 802.11 a/b/g/n/ac with 0.19 ps RMS jitter, in 2011 Symposium on VLSI Circuits - Digest of Technical Papers. (IEEE, Honolulu, 2011), pp. 110–111

    Google Scholar 

  30. J. Zhuang, R.B. Staszewski, A low-power all-digital PLL architecture based on phase prediction, in 2012 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS). (IEEE, Seville, 2012), pp. 797–800

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Markulic, N., Raczkowski, K., Craninckx, J., Wambacq, P. (2019). A Digital-to-Time-Converter-Based Subsampling PLL for Fractional Synthesis. In: Digital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-10958-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10958-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10957-8

  • Online ISBN: 978-3-030-10958-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics