Geochronology of Archean LCT Pegmatites

  • Thomas DittrichEmail author
  • Thomas Seifert
  • Bernhard Schulz
  • Steffen Hagemann
  • Axel Gerdes
  • Jörg Pfänder
Part of the SpringerBriefs in World Mineral Deposits book series (BRIEFSWMD)


The knowledge of the age of an LCT pegmatite mineralisation is one of the key exploration criteria as most of the major LCT pegmatite systems (e.g., Tanco, Greenbushes, Bikita, Wodgina) were formed in relative narrow time intervals within the earth history. In addition, the temporal and spatial relation-ships of the pegmatites to potential source granites, their crystallisation history and geotectonic settings are still under debate. For the evaluation of the petrogenesis and emplacement history we compared Meso- and Neo-Archean LCT pegmatites of the Zimbabwe (Bikita), Pilbara (Wodgina) and Yilgarn Cratons (Londonderry, Mount Deans, Cattlin Creek). Lepidolite and white mica and lepidolite are an abundant constituent of the investigated LCT pegmatites and potentially accessible for 40Ar/39Ar dating. The U–Pb dating of Ta–Nb–Sn oxides and cassiterite LA-ICPMS turned out to be suitable for the Neo-Archean pegmatites due to the widespread occurrence of these minerals as accessories in almost all samples. Furthermore, they are formed at a virtually constant level during pegmatite crystallisation from main crystallisation to late state hydrothermal overprint. The 40Ar/39Ar ages cover a large spectrum from Neoarchean (~2630 Ma) to Paleoproterozoic (~2316 Ma), and are verified by U/Pb tantalite/ columbite ages (~2870 to 2615 Ma, LA-ICP-MS) and by Th-U-Pb electron microprobe monazite ages (~2700 Ma; ~2500 Ma). Micas from the Yilgarn Craton yield Neoarchean cooling ages indicating an immediate cooling after crystallisation. In contrast, micas from the Zimbabwe (~2625 Ma) and Pilbara Craton (~2870 Ma) exhibit Paleoproterozoic cooling ages that significantly postdate initial crystallisation. This is in good agreement with petrographic data that suggests a post pegmatite hydrothermal overprint. Overall, our new age data are in good agreement with a previously postulated global major LCT pegmatite events between 2850 to 2800 Ma and 2650 to 2600 Ma. During this event specific geodynamic conditions (i.e. a super-continent assembly) and associated anormal high heat flow from the mantle enabled the global formation of large volumes of LCT pegmatites.


  1. Cawood PA, Tyler IM (2004) Assembling and reactivating the Proterozoic Capricorn Orogen; lithotectonic elements, orogenies, and significance. Precambr Res 128:201–218CrossRefGoogle Scholar
  2. Dittrich T (2016) Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) pegmatites (Western Australia, Zimbabwe) and a genetic model for the formation of massive pollucite mineralisations. Dissertation Faculty of Geosciences, Geoengineering and Mining, TU Freiberg/Saxony, Germany, 341 pp.
  3. Dittrich T, Seifert T, Schulz B, Pfänder J, Gerdes A (2017) Formation of LCT pegmatites in archean cratons: constraints from 40Ar/39Ar Mica, U–Th–Pb Monazite and U–Pb Tantalite/Columbite dating. Goldschmidt 2017 Conference, Paris, Abstracts, p 959Google Scholar
  4. Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051CrossRefGoogle Scholar
  5. Jeffrey PM (1956) The radioactive age of four Western Australian pegmatites by the potassium and rubidium methods. Geochim Cosmochim Acta 10:191–195CrossRefGoogle Scholar
  6. Jelsma HA, Vinyu ML, Valbrachet PJ, Davies GR, Wijbrans JR, Verdurmen EAT (1996) Constraints on Archaean crustal evolution of the Zimbabwe craton: A U–Pb zircon, Sm–Nd and Pb–Pb whole-rock isotope study. Contrib Mineral Petrol 124:55–70CrossRefGoogle Scholar
  7. Kennedy AK (1998) SHRIMP ages of apatites from Pilbara tin-bearing pegmatites. Geol Soc Austral Abstracts 49:242Google Scholar
  8. Kinny PD (2000) U–Pb dating of rare metal (Sn–Ta–Li) mineralized pegmatites in Western Australia by SIMS analysis of tin and tantalum bearing ore minerals. New Frontiers in Isotope Geoscience Abstracts and Proceedings Lorne (Australia), pp 113–116Google Scholar
  9. Ludwig KR (2003) User manual for isoplot/ex. rev. 2.49.2. a geochronological toolkit for microsoft Excel. Berkeley Geochronological Center Spec Publ 1a, 55 ppGoogle Scholar
  10. Melcher F, Graupner T, Gäbler HE, Sitnikova M, Henjes-Kunst F, Oberthuer T, Gerdes A, Dewaele S (2015) Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geol Rev 64:667–719. Scholar
  11. Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53CrossRefGoogle Scholar
  12. Oberthuer T, Davis DW, Blenkinson TG, Höhndorf A (2002) Precise U–Pb mineral ages, Rb–Sr and Sm–Nd systematics for the Great Dyke, Zimbabwe—constraints on late Archean events in the Zimbabwe craton. Precambr Res 113:293–305CrossRefGoogle Scholar
  13. Rasmussen B, Fletcher IR, Sheppard S (2005) Isotopic dating of the migration of a low-grade metamorphic front during orogenesis. Geology 33:773–776CrossRefGoogle Scholar
  14. Seydoux-Guillaume AM, Paquette JL, Wiedenbeck M, Montel JM, Heinrich WH (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181CrossRefGoogle Scholar
  15. Soederlund U, Hofmann A, Klausen MB, Olsson JR, Ernst RE, Persson PO (2010) Towards a complete magmatic barcode for the Zimbabwe craton: baddeleyite U–Pb dating of regional dolerite dyke swarms and sill complexes. Precambr Res 183:388–398CrossRefGoogle Scholar
  16. van Kranendonk MJ, Hickman AH, Smithies RH, Williams IR, Bagas L, Farrell TR (2006) Revised lithostratigraphy of Archean supracrustal and intrusive rocks in the northern Pilbara Craton, Western Australia. Geol Surv West Austral Record 2006–15, 63 ppGoogle Scholar
  17. van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007) Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Dittrich
    • 1
    Email author
  • Thomas Seifert
    • 1
  • Bernhard Schulz
    • 1
  • Steffen Hagemann
    • 2
  • Axel Gerdes
    • 3
  • Jörg Pfänder
    • 4
  1. 1.Division of Economic Geology and Petrology, Institute of MineralogyTU Bergakademie FreibergFreibergGermany
  2. 2.School of Earth and Environment, Centre for Exploration TargetingThe University of Western AustraliaCrawleyAustralia
  3. 3.Department of GeosciencesGoethe University FrankfurtFrankfurt am MainGermany
  4. 4.Ar-Ar-Lab/Division of Tectonophysics, Institute for GeologyTU Bergakademie FreibergFreibergGermany

Personalised recommendations