Skip to main content

Subgradient Method with Polyak’s Step in Transformed Space

Part of the Communications in Computer and Information Science book series (CCIS,volume 974)

Abstract

We consider two subgradient methods (methods A and B) for finding the minimum point of a convex function for the known optimal value of the function. Method A is a subgradient method, which uses the Polyak’s step in the original space of variables. Method B is a subgradient method in the transformed space of variables, which uses Polyak’s step in the transformed space. For both methods a proof of the convergence of finding the minimum point with a given accuracy by the value of the function was performed. Examples of ravine convex (smooth and non-smooth) functions are given, for which convergence of method A is slow. It is shown that with a suitable choice of the space transformation matrix method B can be significantly accelerated in comparison with method A for ravine convex functions.

Keywords

  • Subgradient method
  • Polyak’s step
  • Space transformation

Supported by Volkswagen Foundation (grant No. 90 306).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-10934-9_4
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-10934-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Polyak, B.T.: Minimization of unsmooth functionals. USSR Comput. Math. Math. Phys. 9(3), 14–29 (1969)

    CrossRef  Google Scholar 

  2. Agmon, S.: The relaxation method for linear inequalities. Can. J. Math. 6(3), 382–392 (1954)

    CrossRef  MathSciNet  Google Scholar 

  3. Motzkin, T., Schoenberg, I.J.: The relaxation method for linear inequalities. Can. J. Math. 6(3), 393–404 (1954)

    CrossRef  MathSciNet  Google Scholar 

  4. Eremin, I.I.: Generalization of the Motzkin-Agmon relaxational method. Uspekhi Mat. Nauk. 20(2), 183–187 (1965)

    MathSciNet  Google Scholar 

  5. Sergienko, I.V., Stetsyuk, P.I.: On N.Z. Shor’s three scientific ideas. Cybern. Syst. Anal. 48(1), 2–16 (2012)

    CrossRef  MathSciNet  Google Scholar 

  6. Shor, N.Z.: Minimization Methods for Non-Differentiable Functions. SSCM, vol. 3. Springer, Berlin (1985). https://doi.org/10.1007/978-3-642-82118-9

    CrossRef  MATH  Google Scholar 

  7. Shor, N.Z.: Nondifferentiable Optimization and Polynomial Problems. Kluwer Academic Publishers, Boston (1998)

    CrossRef  Google Scholar 

  8. Stetsyuk, P.I.: Methods of Ellipsoids and r-Algorithms. Eureka, Chisinau (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Stovba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Stetsyuk, P., Stovba, V., Chernousova, Z. (2019). Subgradient Method with Polyak’s Step in Transformed Space. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds) Optimization and Applications. OPTIMA 2018. Communications in Computer and Information Science, vol 974. Springer, Cham. https://doi.org/10.1007/978-3-030-10934-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10934-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10933-2

  • Online ISBN: 978-3-030-10934-9

  • eBook Packages: Computer ScienceComputer Science (R0)