Social-Affiliation Networks: Patterns and the SOAR Model
- 1.2k Downloads
Abstract
Given a social-affiliation network – a friendship graph where users have many, binary attributes e.g., check-ins, page likes or group memberships – what rules do its structural properties such as edge or triangle counts follow, in relation to its attributes? More challengingly, how can we synthetically generate networks which provably satisfy those rules or patterns? Our work attempts to answer these closely-related questions in the context of the increasingly prevalent social-affiliation graphs. Our contributions are two-fold: (a) Patterns: we discover three new rules (power laws) in the properties of attribute-induced subgraphs, substructures which connect the friendship structure to affiliations; (b) Model: we propose SOAR– short for SOcial-Affiliation graphs via Recursion– a stochastic model based on recursion and self-similarity, to provably generate graphs obeying the observed patterns. Experiments show that: (i) the discovered rules are useful in detecting deviations as anomalies and (ii) SOAR is fast and scales linearly with network size, producing graphs with millions of edges and attributes in only a few seconds. Code related to this paper is available at: www.github.com/dhivyaeswaran/soar.
Keywords
Graph mining Attributes Patterns Anomalies GeneratorNotes
Acknowledgments
This material is based upon work supported by the National Science Foundation under Grants No. CNS-1314632, IIS-1408924 and by DARPA under award FA8750-17-2-0130. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, or other funding parties. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.
References
- 1.Power law. https://en.wikipedia.org/wiki/Power_law
- 2.Akoglu, L., Faloutsos, C.: RTG: a recursive realistic graph generator using random typing. Data Min. Knowl. Discov. 19(2), 194–209 (2009)MathSciNetCrossRefGoogle Scholar
- 3.Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Discov. 29(3), 626–688 (2015)MathSciNetCrossRefGoogle Scholar
- 4.Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
- 5.Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. In: ICWSM. The AAAI Press (2009)Google Scholar
- 6.Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms. ACM Comput. Surv. 38(1), 2 (2006)CrossRefGoogle Scholar
- 7.Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In: SDM, pp. 442–446. SIAM (2004)Google Scholar
- 8.Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: KDD, pp. 1082–1090. ACM (2011)Google Scholar
- 9.Crandall, D.J., Cosley, D., Huttenlocher, D.P., Kleinberg, J.M., Suri, S.: Feedback effects between similarity and social influence in online communities. In: KDD, pp. 160–168. ACM (2008)Google Scholar
- 10.Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: SIGCOMM, pp. 251–262 (1999)Google Scholar
- 11.Fond, T.L., Neville, J.: Randomization tests for distinguishing social influence and homophily effects. In: WWW, pp. 601–610. ACM (2010)Google Scholar
- 12.Goh, K.I., Kahng, B., Kim, D.: Spectra and eigenvectors of scale-free networks. Phys. Rev. E 64(5), 051903 (2001)CrossRefGoogle Scholar
- 13.Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical network models. Found. Trends Mach. Learn. 2(2), 129–233 (2009)CrossRefGoogle Scholar
- 14.Gong, N.Z., Xu, W., Huang, L., Mittal, P., Stefanov, E., Sekar, V., Song, D.: Evolution of social-attribute networks: measurements, modeling, and implications using Google+. In: IMC, pp. 131–144. ACM (2012)Google Scholar
- 15.Kim, M., Leskovec, J.: Multiplicative attribute graph model of real-world networks. Internet Math. 8(1–2), 113–160 (2012)MathSciNetCrossRefGoogle Scholar
- 16.Koutra, D., Koutras, V., Prakash, B.A., Faloutsos, C.: Patterns amongst competing task frequencies: super-linearities, and the Almond-DG model. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7818, pp. 201–212. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37453-1_17CrossRefGoogle Scholar
- 17.Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: KDD, pp. 462–470. ACM (2008)Google Scholar
- 18.Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. JMLR 11, 985–1042 (2010)MathSciNetzbMATHGoogle Scholar
- 19.Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: densification and shrinking diameters. TKDD 1(1), 2 (2007)CrossRefGoogle Scholar
- 20.McGlohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected components: patterns and a generator. In: KDD, pp. 524–532. ACM (2008)Google Scholar
- 21.Mislove, A., Marcon, M., Gummadi, P.K., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: IMC, pp. 29–42. ACM (2007)Google Scholar
- 22.Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. 99(Suppl. 1), 2566–2572 (2002)CrossRefGoogle Scholar
- 23.Perozzi, B., Akoglu, L., Sánchez, P.I., Müller, E.: Focused clustering and outlier detection in large attributed graphs. In: KDD, pp. 1346–1355. ACM (2014)Google Scholar
- 24.Pfeiffer III, J.J., Moreno, S., La Fond, T., Neville, J., Gallagher, B.: Attributed graph models: modeling network structure with correlated attributes. In: WWW, pp. 831–842. ACM (2014)Google Scholar
- 25.Rabbany, R., Eswaran, D., Dubrawski, A.W., Faloutsos, C.: Beyond assortativity: proclivity index for attributed networks (ProNe). In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 225–237. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_18CrossRefGoogle Scholar
- 26.Schacke, K.: On the Kronecker product. Master’s thesis, University of Waterloo (2004)Google Scholar
- 27.Titchmarsh, E.C., Heath-Brown, D.R.: The Theory of the Riemann Zeta-Function. Oxford University Press, Oxford (1986)Google Scholar
- 28.Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
- 29.Zheleva, E., Sharara, H., Getoor, L.: Co-evolution of social and affiliation networks. In: KDD, pp. 1007–1016. ACM (2009)Google Scholar