Discovering Urban Travel Demands Through Dynamic Zone Correlation in Location-Based Social Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11052)


Location-Based Social Networks (LBSN), which enable mobile users to announce their locations by checking-in to Points-of-Interests (POI), has accumulated a huge amount of user-POI interaction data. Compared to traditional sensor data, check-in data provides the much-needed information about trip purpose, which is critical to motivate human mobility but was not available for travel demand studies. In this paper, we aim to exploit the rich check-in data to model dynamic travel demands in urban areas, which can support a wide variety of mobile business solutions. Specifically, we first profile the functionality of city zones using the categorical density of POIs. Second, we use a Hawkes Process-based State-Space formulation to model the dynamic trip arrival patterns based on check-in arrival patterns. Third, we developed a joint model that integrates Pearson Product-Moment Correlation (PPMC) analysis into zone gravity modeling to perform dynamic Origin-Destination (OD) prediction. Last, we validated our methods using real-world LBSN and transportation data of New York City. The experimental results demonstrate the effectiveness of the proposed method for modeling dynamic urban travel demands. Our method achieves a significant improvement on OD prediction compared to baselines. Code related to this paper is available at:


Origin-Destination (OD) analysis Travel demand prediction Location-Based Social Networks 


  1. 1.
    Liu, B., Xiong, H.: Point-of-interest recommendation in location based social networks with topic and location awareness. In: SDM, pp. 396–404. SIAM (2013)Google Scholar
  2. 2.
    Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in location sharing services. In: ICWSM, pp. 81–88 (2011)Google Scholar
  3. 3.
    Hu, W., Jin, P.J.: An adaptive hawkes process formulation for estimating zonal trip arrivals with LBSN data. TRP-C: Emerg. Technol. 79, 136–155 (2017)Google Scholar
  4. 4.
    Chong, W.-H., Dai, B.-T., Lim, E.-P.: Prediction of venues in foursquare using flipped topic models. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 623–634. Springer, Cham (2015). Scholar
  5. 5.
    de Grange, L., Fernández, E., de Cea, J.: A consolidated model of trip distribution. TRP Part E 46(1), 61–75 (2010)CrossRefGoogle Scholar
  6. 6.
    Jin, P., Cebelak, M., Yang, F., Zhang, J., Walton, C., Ran, B.: Exploration into use of doubly constrained gravity model for OD estimation. TRR 2430(1), 72–82 (2014)Google Scholar
  7. 7.
    Elldér, E.: Residential location and daily travel distances: the influence of trip purpose. J. Transp. Geogr. 34, 121–130 (2014)CrossRefGoogle Scholar
  8. 8.
    Carey, H.C.: Principles of Social Science, vol. 3. JB Lippincott & Company, Philadelphia (1867)Google Scholar
  9. 9.
    Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic matrix estimation: existing techniques and new directions. In: SIGCOMM, vol. 32, no. 4, pp. 161–174 (2002)CrossRefGoogle Scholar
  10. 10.
    Zhang, J.D., Chow, C.Y.: Spatiotemporal sequential influence modeling for location recommendations: a gravity-based approach. ACM TIST 7(1), 11 (2015)Google Scholar
  11. 11.
    Stouffer, S.A.: Intervening opportunities: a theory relating mobility and distance. Am. Sociol. Rev. 5(6), 845–867 (1940)CrossRefGoogle Scholar
  12. 12.
    Schneider, M.: Gravity models and trip distribution theory. Reg. Sci. 5(1), 51–56 (1959)CrossRefGoogle Scholar
  13. 13.
    McArdle, G., Lawlor, A., Furey, E., Pozdnoukhov, A.: City-scale traffic simulation from digital footprints. In: SIGKDD UrbComp, pp. 47–54. ACM (2012)Google Scholar
  14. 14.
    Tarasov, A., Kling, F., Pozdnoukhov, A.: Prediction of user location using the radiation model and social check-ins. In: SIGKDD UrbComp, p. 8. ACM (2013)Google Scholar
  15. 15.
    Lee, J.H., Gao, S., Goulias, K.G.: Can Twitter data be used to validate travel demand models. In: IATBR (2015)Google Scholar
  16. 16.
    Bierlaire, M., Crittin, F.: An efficient algorithm for real-time estimation and prediction of dynamic OD tables. Oper. Res. 52(1), 116–127 (2004)CrossRefGoogle Scholar
  17. 17.
    Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.: Real-time urban monitoring using cell phones: a case study in Rome. IEEE Trans. Intell. Transp. Syst. 12(1), 141–151 (2011)CrossRefGoogle Scholar
  18. 18.
    Liu, B., Fu, Y., Yao, Z., Xiong, H.: Learning geographical preferences for point-of-interest recommendation. In: SIGKDD, pp. 1043–1051. ACM (2013)Google Scholar
  19. 19.
    Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and POIs. In: SIGKDD, pp. 186–194. ACM (2012)Google Scholar
  20. 20.
    Shi, Y., Serdyukov, P., Hanjalic, A., Larson, M.: Nontrivial landmark recommendation using geotagged photos. ACM TIST 4(3), 47 (2013)Google Scholar
  21. 21.
    Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation using geosocial network data. In: SIGSPATIAL, pp. 199–208. ACM (2012)Google Scholar
  22. 22.
    Ference, G., Ye, M., Lee, W. C.: Location recommendation for out-of-town users in location-based social networks. In: CIKM, pp. 721–726, ACM (2013)Google Scholar
  23. 23.
    Wang, H., Terrovitis, M., Mamoulis, N.: Location recommendation in location-based social networks using user check-in data. In: SIGSPATIAL, pp. 374–383. ACM (2013)Google Scholar
  24. 24.
    Ying, J.J.C., Kuo, W.N., Tseng, V.S., Lu, E.H.C.: Mining user check-in behavior with a random walk for urban POI recommendations. ACM TIST 5(3), 40 (2014)Google Scholar
  25. 25.
    Gao, H., Tang, J., Hu, X., Liu, H.: Exploring temporal effects for location recommendation on location-based social networks. In: RecSys, pp. 93–100. ACM (2013)Google Scholar
  26. 26.
    Yuan, Q., Cong, G., Ma, Z., Sun, A., Thalmann, N.M.: Time-aware point-of-interest recommendation. In: SIGIR, pp. 363–372. ACM (2013)Google Scholar
  27. 27.
    Yuan, Q., Cong, G., Sun, A.: Graph-based point-of-interest recommendation with geographical and temporal influences. In: CIKM, pp. 659–668. ACM (2014)Google Scholar
  28. 28.
    Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: SIGKDD, pp. 1082–1090. ACM (2011)Google Scholar
  29. 29.
    Wang, Y., et al.: Location prediction using heterogeneous mobility data. In: SIGKDD, pp. 1275–1284. ACM (2015)Google Scholar
  30. 30.
    Lian, D., Xie, X., Zheng, V.W., Yuan, N.J., Zhang, F., Chen, E.: A collaborative exploration and returning model for location prediction. ACM TIST 6(1), 8 (2015)Google Scholar
  31. 31.
    Li, X., Lian, D., Xie, X., Sun, G.: Lifting the predictability of human mobility on activity trajectories. In: ICDMW, pp. 1063–1069. IEEE (2015)Google Scholar
  32. 32.
    Deming, W.E., Stephan, F.F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11(4), 427–444 (1940)MathSciNetCrossRefGoogle Scholar
  33. 33.
  34. 34.
    Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3), 1–101 (2011)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Simini, F., González, M.C., Maritan, A., Barabási, A.L.: A universal model for mobility and migration patterns. Nature 484(7392), 96 (2012)CrossRefGoogle Scholar
  36. 36.
    Martin, W.A., McGuckin, N.A.: Travel Estimation Techniques for Urban Planning, vol. 365. National Academy Press, Washington (1998)Google Scholar
  37. 37.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Rutgers UniversityNew BrunswickUSA
  2. 2.IBM Thomas J. Watson Research CenterYorktownUSA

Personalised recommendations