Abstract
The quantity of event logs available is increasing rapidly, be they produced by industrial processes, computing systems, or life tracking, for instance. It is thus important to design effective ways to uncover the information they contain. Because event logs often record repetitive phenomena, mining periodic patterns is especially relevant when considering such data. Indeed, capturing such regularities is instrumental in providing condensed representations of the event sequences.
We present an approach for mining periodic patterns from event logs while relying on a Minimum Description Length (MDL) criterion to evaluate candidate patterns. Our goal is to extract a set of patterns that suitably characterises the periodic structure present in the data. We evaluate the interest of our approach on several real-world event log datasets. Code related to this paper is available at: https://github.com/nurblageij/periodic-patterns-mdl.
Keywords
- Periodic patterns
- MDL
- Sequence mining
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Bellman, R.: On the approximation of curves by line segments using dynamic programming. Commun. ACM 4(6), 284 (1961)
Berberidis, C., Vlahavas, I., Aref, W.G., Atallah, M., Elmagarmid, A.K.: On the discovery of weak periodicities in large time series. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 51–61. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_5
Bhattacharyya, A., Vreeken, J.: Efficiently summarising event sequences with rich interleaving patterns. In: SDM 2017, pp. 795–803. SIAM (2017)
Bonchi, F., van Leeuwen, M., Ukkonen, A.: Characterizing uncertain data using compression. In: SDM 2011, pp. 534–545. SIAM (2011)
De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: SDM 2007, pp. 237–248. SIAM (2007)
Galbrun, E., Cellier, P., Tatti, N., Termier, A., Crémilleux, B.: Mining periodic patterns with a MDL criterion. ArXiv e-prints (2018). arXiv:1807.01706 [cs.DB]
Grünwald, P.: Model selection based on minimum description length. J. Math. Psychol. 44(1), 133–152 (2000)
Grünwald, P.: The Minimum Description Length Principle. MIT Press, Cambridge (2007)
Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: ICDE 1999, pp. 106–115 (1999)
Han, J., Gong, W., Yin, Y.: Mining segment-wise periodic patterns in time-related databases. In: KDD 1998, pp. 214–218 (1998)
Heierman III, E.O., Cook, D.J.: Improving home automation by discovering regularly occurring device usage patterns. In: ICDM 2003, pp. 537–540 (2003)
Kiernan, J., Terzi, E.: Constructing comprehensive summaries of large event sequences. ACM Trans. Knowl. Discov. Data 3(4), 21:1–21:31 (2009)
Lam, H.T., Moerchen, F., Fradkin, D., Calders, T.: Mining compressing sequential patterns. In: SDM 2012, pp. 319–330. SIAM (2012)
Li, Z., Wang, J., Han, J.: Mining event periodicity from incomplete observations. In: KDD 2012, pp. 444–452. ACM (2012)
Lopez-Cueva, P., Bertaux, A., Termier, A., Méhaut, J.-F., Santana, M.: Debugging embedded multimedia application traces through periodic pattern mining. In: International Conference on Embedded Software, EMSOFT 2012 (2012)
Ma, S., Hellerstein, J.L.: Mining partially periodic event patterns with unknown periods. In: ICDE 2001, pp. 205–214. IEEE Computer Society (2001)
Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In: ICDE 1998, pp. 412–421. IEEE Computer Society (1998)
Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)
Smets, K., Vreeken, J.: Slim: Directly mining descriptive patterns. In: SDM 2012, pp. 236–247. SIAM (2012)
Tatti, N., Vreeken, J.: The long and the short of it: summarising event sequences with serial episodes. In: KDD 2012, pp. 462–470. ACM (2012)
Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data Min. Knowl. Discov. 23(1), 169–214 (2011)
Yuan, Q., Zhang, W., Zhang, C., Geng, X., Cong, G., Han, J.: PRED: periodic region detection for mobility modeling of social media users. In: WSDM 2017, pp. 263–272. ACM (2017)
Acknowledgements
The authors thank Hiroki Arimura and Jilles Vreeken for valuable discussions. This work has been supported by Grenoble Alpes Metropole through the Nano2017 Itrami project, by the QCM-BioChem project (CNRS Mastodons) and by the Academy of Finland projects “Nestor” (286211) and “Agra” (313927).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Galbrun, E., Cellier, P., Tatti, N., Termier, A., Crémilleux, B. (2019). Mining Periodic Patterns with a MDL Criterion. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2018. Lecture Notes in Computer Science(), vol 11052. Springer, Cham. https://doi.org/10.1007/978-3-030-10928-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-10928-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10927-1
Online ISBN: 978-3-030-10928-8
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.ecmlpkdd.org/
