Skip to main content

Mining Periodic Patterns with a MDL Criterion

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11052)

Abstract

The quantity of event logs available is increasing rapidly, be they produced by industrial processes, computing systems, or life tracking, for instance. It is thus important to design effective ways to uncover the information they contain. Because event logs often record repetitive phenomena, mining periodic patterns is especially relevant when considering such data. Indeed, capturing such regularities is instrumental in providing condensed representations of the event sequences.

We present an approach for mining periodic patterns from event logs while relying on a Minimum Description Length (MDL) criterion to evaluate candidate patterns. Our goal is to extract a set of patterns that suitably characterises the periodic structure present in the data. We evaluate the interest of our approach on several real-world event log datasets. Code related to this paper is available at: https://github.com/nurblageij/periodic-patterns-mdl.

Keywords

  • Periodic patterns
  • MDL
  • Sequence mining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/nurblageij/periodic-patterns-mdl.

  2. 2.

    STiH418 description: http://www.st.com/resource/en/data_brief/stih314.pdf.

  3. 3.

    https://archive.ics.uci.edu/ml/datasets/UbiqLog+(smartphone+lifelogging).

  4. 4.

    https://git.samba.org/.

  5. 5.

    http://quantifiedawesome.com/records.

References

  1. Bellman, R.: On the approximation of curves by line segments using dynamic programming. Commun. ACM 4(6), 284 (1961)

    CrossRef  MathSciNet  Google Scholar 

  2. Berberidis, C., Vlahavas, I., Aref, W.G., Atallah, M., Elmagarmid, A.K.: On the discovery of weak periodicities in large time series. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 51–61. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_5

    CrossRef  MATH  Google Scholar 

  3. Bhattacharyya, A., Vreeken, J.: Efficiently summarising event sequences with rich interleaving patterns. In: SDM 2017, pp. 795–803. SIAM (2017)

    Google Scholar 

  4. Bonchi, F., van Leeuwen, M., Ukkonen, A.: Characterizing uncertain data using compression. In: SDM 2011, pp. 534–545. SIAM (2011)

    Google Scholar 

  5. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: SDM 2007, pp. 237–248. SIAM (2007)

    Google Scholar 

  6. Galbrun, E., Cellier, P., Tatti, N., Termier, A., Crémilleux, B.: Mining periodic patterns with a MDL criterion. ArXiv e-prints (2018). arXiv:1807.01706 [cs.DB]

  7. Grünwald, P.: Model selection based on minimum description length. J. Math. Psychol. 44(1), 133–152 (2000)

    CrossRef  MathSciNet  Google Scholar 

  8. Grünwald, P.: The Minimum Description Length Principle. MIT Press, Cambridge (2007)

    CrossRef  Google Scholar 

  9. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: ICDE 1999, pp. 106–115 (1999)

    Google Scholar 

  10. Han, J., Gong, W., Yin, Y.: Mining segment-wise periodic patterns in time-related databases. In: KDD 1998, pp. 214–218 (1998)

    Google Scholar 

  11. Heierman III, E.O., Cook, D.J.: Improving home automation by discovering regularly occurring device usage patterns. In: ICDM 2003, pp. 537–540 (2003)

    Google Scholar 

  12. Kiernan, J., Terzi, E.: Constructing comprehensive summaries of large event sequences. ACM Trans. Knowl. Discov. Data 3(4), 21:1–21:31 (2009)

    CrossRef  Google Scholar 

  13. Lam, H.T., Moerchen, F., Fradkin, D., Calders, T.: Mining compressing sequential patterns. In: SDM 2012, pp. 319–330. SIAM (2012)

    Google Scholar 

  14. Li, Z., Wang, J., Han, J.: Mining event periodicity from incomplete observations. In: KDD 2012, pp. 444–452. ACM (2012)

    Google Scholar 

  15. Lopez-Cueva, P., Bertaux, A., Termier, A., Méhaut, J.-F., Santana, M.: Debugging embedded multimedia application traces through periodic pattern mining. In: International Conference on Embedded Software, EMSOFT 2012 (2012)

    Google Scholar 

  16. Ma, S., Hellerstein, J.L.: Mining partially periodic event patterns with unknown periods. In: ICDE 2001, pp. 205–214. IEEE Computer Society (2001)

    Google Scholar 

  17. Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In: ICDE 1998, pp. 412–421. IEEE Computer Society (1998)

    Google Scholar 

  18. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)

    CrossRef  Google Scholar 

  19. Smets, K., Vreeken, J.: Slim: Directly mining descriptive patterns. In: SDM 2012, pp. 236–247. SIAM (2012)

    Google Scholar 

  20. Tatti, N., Vreeken, J.: The long and the short of it: summarising event sequences with serial episodes. In: KDD 2012, pp. 462–470. ACM (2012)

    Google Scholar 

  21. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data Min. Knowl. Discov. 23(1), 169–214 (2011)

    CrossRef  MathSciNet  Google Scholar 

  22. Yuan, Q., Zhang, W., Zhang, C., Geng, X., Cong, G., Han, J.: PRED: periodic region detection for mobility modeling of social media users. In: WSDM 2017, pp. 263–272. ACM (2017)

    Google Scholar 

Download references

Acknowledgements

The authors thank Hiroki Arimura and Jilles Vreeken for valuable discussions. This work has been supported by Grenoble Alpes Metropole through the Nano2017 Itrami project, by the QCM-BioChem project (CNRS Mastodons) and by the Academy of Finland projects “Nestor” (286211) and “Agra” (313927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Galbrun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galbrun, E., Cellier, P., Tatti, N., Termier, A., Crémilleux, B. (2019). Mining Periodic Patterns with a MDL Criterion. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2018. Lecture Notes in Computer Science(), vol 11052. Springer, Cham. https://doi.org/10.1007/978-3-030-10928-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10928-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10927-1

  • Online ISBN: 978-3-030-10928-8

  • eBook Packages: Computer ScienceComputer Science (R0)