Abstract
Given sensor readings over time from a power grid consisting of nodes (e.g. generators) and edges (e.g. power lines), how can we most accurately detect when an electrical component has failed? More challengingly, given a limited budget of sensors to place, how can we determine where to place them to have the highest chance of detecting such a failure? Maintaining the reliability of the electrical grid is a major challenge. An important part of achieving this is to place sensors in the grid, and use them to detect anomalies, in order to quickly respond to a problem. Our contributions are: (1) Online anomaly detection: we propose a novel, online anomaly detection algorithm that outperforms existing approaches. (2) Sensor placement: we construct an optimization objective for sensor placement, with the goal of maximizing the probability of detecting an anomaly. We show that this objective has the property of submodularity, which we exploit in our sensor placement algorithm. (3) Effectiveness: Our sensor placement algorithm is provably near-optimal, and both our algorithms outperform existing approaches in accuracy by \(59\%\) or more (F-measure) in experiments. (4) Scalability: our algorithms scale linearly, and our detection algorithm is online, requiring bounded space and constant time per update. Code related to this paper is available at: https://github.com/bhooi/gridwatch.
This is a preview of subscription content, access via your institution.
Buying options





Notes
- 1.
IQR is a robust measure of spread, equal to the difference between the \(75\%\) and \(25\%\) quantiles.
References
IEEE power systems test case archive. http://www2.ee.washington.edu/research/pstca/. Accessed 15 Mar 2017
Aggarwal, C.C., Zhao, Y., Philip, S.Y.: Outlier detection in graph streams. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 399–409. IEEE (2011)
Akoglu, L., Faloutsos, C.: Event detection in time series of mobile communication graphs. In: Army Science Conference, pp. 77–79 (2010)
Akoglu, L., McGlohon, M., Faloutsos, C.: Oddball: spotting anomalies in weighted graphs. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 410–421. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13672-6_40
Amin, S.M.: US grid gets less reliable [the data]. IEEE Spectr. 48(1), 80–80 (2011)
Araujo, M., et al.: Com2: fast automatic discovery of temporal (‘comet’) communities. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8444, pp. 271–283. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06605-9_23
Baldwin, T., Mili, L., Boisen, M., Adapa, R.: Power system observability with minimal phasor measurement placement. IEEE Trans. Power Syst. 8(2), 707–715 (1993)
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM (2000)
Brueni, D.J., Heath, L.S.: The PMU placement problem. SIAM J. Discret. Math. 19(3), 744–761 (2005)
Chen, Z., Hendrix, W., Samatova, N.F.: Community-based anomaly detection in evolutionary networks. J. Intell. Inf. Syst. 39(1), 59–85 (2012)
Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91(24), 247901 (2003)
Dua, D., Dambhare, S., Gajbhiye, R.K., Soman, S.: Optimal multistage scheduling of PMU placement: an ILP approach. IEEE Trans. Power Deliv. 23(4), 1812–1820 (2008)
Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)
Hamilton, J.D.: Time Series Analysis, vol. 2. Princeton University Press, Princeton (1994)
Jones, M., Nikovski, D., Imamura, M., Hirata, T.: Anomaly detection in real-valued multidimensional time series. In: International Conference on Bigdata/Socialcom/Cybersecurity. Stanford University, ASE. Citeseer (2014)
Kekatos, V., Giannakis, G.B., Wollenberg, B.: Optimal placement of phasor measurement units via convex relaxation. IEEE Trans. Power Syst. 27(3), 1521–1530 (2012)
Keogh, E., Lin, J., Lee, S.H., Van Herle, H.: Finding the most unusual time series subsequence: algorithms and applications. Knowl. Inf. Syst. 11(1), 1–27 (2007)
Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: KDD, pp. 420–429. ACM (2007)
Li, Q., Negi, R., Ilić, M.D.: Phasor measurement units placement for power system state estimation: a greedy approach. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–8. IEEE (2011)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM, pp. 413–422. IEEE (2008)
Magnago, F.H., Abur, A.: A unified approach to robust meter placement against loss of measurements and branch outages. In: Proceedings of the 21st 1999 IEEE International Conference Power on Industry Computer Applications, PICA 1999, pp. 3–8. IEEE (1999)
Mongiovi, M., Bogdanov, P., Ranca, R., Papalexakis, E.E., Faloutsos, C., Singh, A.K.: Netspot: spotting significant anomalous regions on dynamic networks. In: SDM, pp. 28–36. SIAM (2013)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)
Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)
Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Rakpenthai, C., Premrudeepreechacharn, S., Uatrongjit, S., Watson, N.R.: An optimal PMU placement method against measurement loss and branch outage. IEEE Trans. Power Deliv. 22(1), 101–107 (2007)
Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. In: ACM Sigmod Record, vol. 29, pp. 427–438. ACM (2000)
Ranshous, S., Harenberg, S., Sharma, K., Samatova, N.F.: A scalable approach for outlier detection in edge streams using sketch-based approximations. In: SDM, pp. 189–197. SIAM (2016)
Shah, N., Koutra, D., Zou, T., Gallagher, B., Faloutsos, C.: TimeCrunch: interpretable dynamic graph summarization. In: KDD, pp. 1055–1064. ACM (2015)
Song, H.A., Hooi, B., Jereminov, M., Pandey, A., Pileggi, L., Faloutsos, C.: PowerCast: mining and forecasting power grid sequences. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 606–621. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_37
Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)
Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS) 11(1), 37–57 (1985)
Yi, S., Ju, J., Yoon, M.K., Choi, J.: Grouped convolutional neural networks for multivariate time series. arXiv preprint arXiv:1703.09938 (2017)
Yule, G.U.: An Introduction to the Theory of Statistics. C. Griffin, limited, London (1919)
Zhao, Y., Goldsmith, A., Poor, H.V.: On PMU location selection for line outage detection in wide-area transmission networks. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–8. IEEE (2012)
Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)
Acknowledgment
This material is based upon work supported by the National Science Foundation under Grant No. CNS-1314632, IIS-1408924, and by the Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053, and in part by the Defense Advanced Research Projects Agency (DARPA) under award no. FA8750-17-1-0059 for the RADICS program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, or other funding parties. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Hooi, B. et al. (2019). GridWatch: Sensor Placement and Anomaly Detection in the Electrical Grid. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2018. Lecture Notes in Computer Science(), vol 11051. Springer, Cham. https://doi.org/10.1007/978-3-030-10925-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-10925-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10924-0
Online ISBN: 978-3-030-10925-7
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.ecmlpkdd.org/