Skip to main content

GridWatch: Sensor Placement and Anomaly Detection in the Electrical Grid

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11051)

Abstract

Given sensor readings over time from a power grid consisting of nodes (e.g. generators) and edges (e.g. power lines), how can we most accurately detect when an electrical component has failed? More challengingly, given a limited budget of sensors to place, how can we determine where to place them to have the highest chance of detecting such a failure? Maintaining the reliability of the electrical grid is a major challenge. An important part of achieving this is to place sensors in the grid, and use them to detect anomalies, in order to quickly respond to a problem. Our contributions are: (1) Online anomaly detection: we propose a novel, online anomaly detection algorithm that outperforms existing approaches. (2) Sensor placement: we construct an optimization objective for sensor placement, with the goal of maximizing the probability of detecting an anomaly. We show that this objective has the property of submodularity, which we exploit in our sensor placement algorithm. (3) Effectiveness: Our sensor placement algorithm is provably near-optimal, and both our algorithms outperform existing approaches in accuracy by \(59\%\) or more (F-measure) in experiments. (4) Scalability: our algorithms scale linearly, and our detection algorithm is online, requiring bounded space and constant time per update. Code related to this paper is available at: https://github.com/bhooi/gridwatch.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-10925-7_5
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-10925-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. 1.

    IQR is a robust measure of spread, equal to the difference between the \(75\%\) and \(25\%\) quantiles.

References

  1. IEEE power systems test case archive. http://www2.ee.washington.edu/research/pstca/. Accessed 15 Mar 2017

  2. Aggarwal, C.C., Zhao, Y., Philip, S.Y.: Outlier detection in graph streams. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 399–409. IEEE (2011)

    Google Scholar 

  3. Akoglu, L., Faloutsos, C.: Event detection in time series of mobile communication graphs. In: Army Science Conference, pp. 77–79 (2010)

    Google Scholar 

  4. Akoglu, L., McGlohon, M., Faloutsos, C.: Oddball: spotting anomalies in weighted graphs. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 410–421. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13672-6_40

    CrossRef  Google Scholar 

  5. Amin, S.M.: US grid gets less reliable [the data]. IEEE Spectr. 48(1), 80–80 (2011)

    CrossRef  MathSciNet  Google Scholar 

  6. Araujo, M., et al.: Com2: fast automatic discovery of temporal (‘comet’) communities. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8444, pp. 271–283. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06605-9_23

    CrossRef  Google Scholar 

  7. Baldwin, T., Mili, L., Boisen, M., Adapa, R.: Power system observability with minimal phasor measurement placement. IEEE Trans. Power Syst. 8(2), 707–715 (1993)

    CrossRef  Google Scholar 

  8. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM (2000)

    Google Scholar 

  9. Brueni, D.J., Heath, L.S.: The PMU placement problem. SIAM J. Discret. Math. 19(3), 744–761 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Chen, Z., Hendrix, W., Samatova, N.F.: Community-based anomaly detection in evolutionary networks. J. Intell. Inf. Syst. 39(1), 59–85 (2012)

    CrossRef  Google Scholar 

  11. Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91(24), 247901 (2003)

    CrossRef  Google Scholar 

  12. Dua, D., Dambhare, S., Gajbhiye, R.K., Soman, S.: Optimal multistage scheduling of PMU placement: an ILP approach. IEEE Trans. Power Deliv. 23(4), 1812–1820 (2008)

    CrossRef  Google Scholar 

  13. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    CrossRef  Google Scholar 

  14. Hamilton, J.D.: Time Series Analysis, vol. 2. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  15. Jones, M., Nikovski, D., Imamura, M., Hirata, T.: Anomaly detection in real-valued multidimensional time series. In: International Conference on Bigdata/Socialcom/Cybersecurity. Stanford University, ASE. Citeseer (2014)

    Google Scholar 

  16. Kekatos, V., Giannakis, G.B., Wollenberg, B.: Optimal placement of phasor measurement units via convex relaxation. IEEE Trans. Power Syst. 27(3), 1521–1530 (2012)

    CrossRef  Google Scholar 

  17. Keogh, E., Lin, J., Lee, S.H., Van Herle, H.: Finding the most unusual time series subsequence: algorithms and applications. Knowl. Inf. Syst. 11(1), 1–27 (2007)

    CrossRef  Google Scholar 

  18. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: KDD, pp. 420–429. ACM (2007)

    Google Scholar 

  19. Li, Q., Negi, R., Ilić, M.D.: Phasor measurement units placement for power system state estimation: a greedy approach. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–8. IEEE (2011)

    Google Scholar 

  20. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM, pp. 413–422. IEEE (2008)

    Google Scholar 

  21. Magnago, F.H., Abur, A.: A unified approach to robust meter placement against loss of measurements and branch outages. In: Proceedings of the 21st 1999 IEEE International Conference Power on Industry Computer Applications, PICA 1999, pp. 3–8. IEEE (1999)

    Google Scholar 

  22. Mongiovi, M., Bogdanov, P., Ranca, R., Papalexakis, E.E., Faloutsos, C., Singh, A.K.: Netspot: spotting significant anomalous regions on dynamic networks. In: SDM, pp. 28–36. SIAM (2013)

    Google Scholar 

  23. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)

    CrossRef  Google Scholar 

  26. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Rakpenthai, C., Premrudeepreechacharn, S., Uatrongjit, S., Watson, N.R.: An optimal PMU placement method against measurement loss and branch outage. IEEE Trans. Power Deliv. 22(1), 101–107 (2007)

    CrossRef  Google Scholar 

  28. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. In: ACM Sigmod Record, vol. 29, pp. 427–438. ACM (2000)

    Google Scholar 

  29. Ranshous, S., Harenberg, S., Sharma, K., Samatova, N.F.: A scalable approach for outlier detection in edge streams using sketch-based approximations. In: SDM, pp. 189–197. SIAM (2016)

    Google Scholar 

  30. Shah, N., Koutra, D., Zou, T., Gallagher, B., Faloutsos, C.: TimeCrunch: interpretable dynamic graph summarization. In: KDD, pp. 1055–1064. ACM (2015)

    Google Scholar 

  31. Song, H.A., Hooi, B., Jereminov, M., Pandey, A., Pileggi, L., Faloutsos, C.: PowerCast: mining and forecasting power grid sequences. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 606–621. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_37

    CrossRef  Google Scholar 

  32. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  33. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS) 11(1), 37–57 (1985)

    CrossRef  MathSciNet  MATH  Google Scholar 

  34. Yi, S., Ju, J., Yoon, M.K., Choi, J.: Grouped convolutional neural networks for multivariate time series. arXiv preprint arXiv:1703.09938 (2017)

  35. Yule, G.U.: An Introduction to the Theory of Statistics. C. Griffin, limited, London (1919)

    MATH  Google Scholar 

  36. Zhao, Y., Goldsmith, A., Poor, H.V.: On PMU location selection for line outage detection in wide-area transmission networks. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–8. IEEE (2012)

    Google Scholar 

  37. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    CrossRef  Google Scholar 

Download references

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant No. CNS-1314632, IIS-1408924, and by the Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053, and in part by the Defense Advanced Research Projects Agency (DARPA) under award no. FA8750-17-1-0059 for the RADICS program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, or other funding parties. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Hooi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hooi, B. et al. (2019). GridWatch: Sensor Placement and Anomaly Detection in the Electrical Grid. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2018. Lecture Notes in Computer Science(), vol 11051. Springer, Cham. https://doi.org/10.1007/978-3-030-10925-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10925-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10924-0

  • Online ISBN: 978-3-030-10925-7

  • eBook Packages: Computer ScienceComputer Science (R0)