GridWatch: Sensor Placement and Anomaly Detection in the Electrical Grid

  • Bryan HooiEmail author
  • Dhivya Eswaran
  • Hyun Ah Song
  • Amritanshu Pandey
  • Marko Jereminov
  • Larry Pileggi
  • Christos Faloutsos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11051)


Given sensor readings over time from a power grid consisting of nodes (e.g. generators) and edges (e.g. power lines), how can we most accurately detect when an electrical component has failed? More challengingly, given a limited budget of sensors to place, how can we determine where to place them to have the highest chance of detecting such a failure? Maintaining the reliability of the electrical grid is a major challenge. An important part of achieving this is to place sensors in the grid, and use them to detect anomalies, in order to quickly respond to a problem. Our contributions are: (1) Online anomaly detection: we propose a novel, online anomaly detection algorithm that outperforms existing approaches. (2) Sensor placement: we construct an optimization objective for sensor placement, with the goal of maximizing the probability of detecting an anomaly. We show that this objective has the property of submodularity, which we exploit in our sensor placement algorithm. (3) Effectiveness: Our sensor placement algorithm is provably near-optimal, and both our algorithms outperform existing approaches in accuracy by \(59\%\) or more (F-measure) in experiments. (4) Scalability: our algorithms scale linearly, and our detection algorithm is online, requiring bounded space and constant time per update. Code related to this paper is available at:



This material is based upon work supported by the National Science Foundation under Grant No. CNS-1314632, IIS-1408924, and by the Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053, and in part by the Defense Advanced Research Projects Agency (DARPA) under award no. FA8750-17-1-0059 for the RADICS program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, or other funding parties. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.


  1. 1.
    IEEE power systems test case archive. Accessed 15 Mar 2017
  2. 2.
    Aggarwal, C.C., Zhao, Y., Philip, S.Y.: Outlier detection in graph streams. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 399–409. IEEE (2011)Google Scholar
  3. 3.
    Akoglu, L., Faloutsos, C.: Event detection in time series of mobile communication graphs. In: Army Science Conference, pp. 77–79 (2010)Google Scholar
  4. 4.
    Akoglu, L., McGlohon, M., Faloutsos, C.: Oddball: spotting anomalies in weighted graphs. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 410–421. Springer, Heidelberg (2010). Scholar
  5. 5.
    Amin, S.M.: US grid gets less reliable [the data]. IEEE Spectr. 48(1), 80–80 (2011)MathSciNetGoogle Scholar
  6. 6.
    Araujo, M., et al.: Com2: fast automatic discovery of temporal (‘comet’) communities. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8444, pp. 271–283. Springer, Cham (2014). Scholar
  7. 7.
    Baldwin, T., Mili, L., Boisen, M., Adapa, R.: Power system observability with minimal phasor measurement placement. IEEE Trans. Power Syst. 8(2), 707–715 (1993)Google Scholar
  8. 8.
    Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM (2000)Google Scholar
  9. 9.
    Brueni, D.J., Heath, L.S.: The PMU placement problem. SIAM J. Discret. Math. 19(3), 744–761 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chen, Z., Hendrix, W., Samatova, N.F.: Community-based anomaly detection in evolutionary networks. J. Intell. Inf. Syst. 39(1), 59–85 (2012)Google Scholar
  11. 11.
    Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91(24), 247901 (2003)Google Scholar
  12. 12.
    Dua, D., Dambhare, S., Gajbhiye, R.K., Soman, S.: Optimal multistage scheduling of PMU placement: an ILP approach. IEEE Trans. Power Deliv. 23(4), 1812–1820 (2008)Google Scholar
  13. 13.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)Google Scholar
  14. 14.
    Hamilton, J.D.: Time Series Analysis, vol. 2. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  15. 15.
    Jones, M., Nikovski, D., Imamura, M., Hirata, T.: Anomaly detection in real-valued multidimensional time series. In: International Conference on Bigdata/Socialcom/Cybersecurity. Stanford University, ASE. Citeseer (2014)Google Scholar
  16. 16.
    Kekatos, V., Giannakis, G.B., Wollenberg, B.: Optimal placement of phasor measurement units via convex relaxation. IEEE Trans. Power Syst. 27(3), 1521–1530 (2012)Google Scholar
  17. 17.
    Keogh, E., Lin, J., Lee, S.H., Van Herle, H.: Finding the most unusual time series subsequence: algorithms and applications. Knowl. Inf. Syst. 11(1), 1–27 (2007)Google Scholar
  18. 18.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: KDD, pp. 420–429. ACM (2007)Google Scholar
  19. 19.
    Li, Q., Negi, R., Ilić, M.D.: Phasor measurement units placement for power system state estimation: a greedy approach. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–8. IEEE (2011)Google Scholar
  20. 20.
    Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM, pp. 413–422. IEEE (2008)Google Scholar
  21. 21.
    Magnago, F.H., Abur, A.: A unified approach to robust meter placement against loss of measurements and branch outages. In: Proceedings of the 21st 1999 IEEE International Conference Power on Industry Computer Applications, PICA 1999, pp. 3–8. IEEE (1999)Google Scholar
  22. 22.
    Mongiovi, M., Bogdanov, P., Ranca, R., Papalexakis, E.E., Faloutsos, C., Singh, A.K.: Netspot: spotting significant anomalous regions on dynamic networks. In: SDM, pp. 28–36. SIAM (2013)Google Scholar
  23. 23.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)Google Scholar
  26. 26.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Rakpenthai, C., Premrudeepreechacharn, S., Uatrongjit, S., Watson, N.R.: An optimal PMU placement method against measurement loss and branch outage. IEEE Trans. Power Deliv. 22(1), 101–107 (2007)Google Scholar
  28. 28.
    Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. In: ACM Sigmod Record, vol. 29, pp. 427–438. ACM (2000)Google Scholar
  29. 29.
    Ranshous, S., Harenberg, S., Sharma, K., Samatova, N.F.: A scalable approach for outlier detection in edge streams using sketch-based approximations. In: SDM, pp. 189–197. SIAM (2016)Google Scholar
  30. 30.
    Shah, N., Koutra, D., Zou, T., Gallagher, B., Faloutsos, C.: TimeCrunch: interpretable dynamic graph summarization. In: KDD, pp. 1055–1064. ACM (2015)Google Scholar
  31. 31.
    Song, H.A., Hooi, B., Jereminov, M., Pandey, A., Pileggi, L., Faloutsos, C.: PowerCast: mining and forecasting power grid sequences. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 606–621. Springer, Cham (2017). Scholar
  32. 32.
    Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS) 11(1), 37–57 (1985)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yi, S., Ju, J., Yoon, M.K., Choi, J.: Grouped convolutional neural networks for multivariate time series. arXiv preprint arXiv:1703.09938 (2017)
  35. 35.
    Yule, G.U.: An Introduction to the Theory of Statistics. C. Griffin, limited, London (1919)zbMATHGoogle Scholar
  36. 36.
    Zhao, Y., Goldsmith, A., Poor, H.V.: On PMU location selection for line outage detection in wide-area transmission networks. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–8. IEEE (2012)Google Scholar
  37. 37.
    Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bryan Hooi
    • 1
    • 2
    Email author
  • Dhivya Eswaran
    • 1
  • Hyun Ah Song
    • 1
  • Amritanshu Pandey
    • 3
  • Marko Jereminov
    • 3
  • Larry Pileggi
    • 3
  • Christos Faloutsos
    • 1
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of StatisticsCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations