Skip to main content

Wave Turbulence: A Set of Stochastic Nonlinear Waves in Interaction

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Applications in Nonlinear Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Wave turbulence concerns the study of dynamical and statistical properties of a field of random nonlinear waves in interaction. Although it occurs in various situations (ocean surface waves, internal waves in geophysics, Alfvén waves in astrophysical plasmas, or nonlinear waves in optics), well-controlled laboratory experiments on wave turbulence are relatively scarce despite the experimental efforts of the last decade. At the ICAND2018 conference, I presented a short review on laboratory experiments on wave turbulence on the surface of a fluid. I notably discussed the role of strongly nonlinear waves to better describe the dynamics of ocean waves. Here, I report some results obtained by our group on wave turbulence, performed in different experimental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Falcon, Laboratory experiments on wave turbulence. Discrete Contin. Dyn. Syst.-Ser. B 13, 819 (2010)

    Article  MathSciNet  Google Scholar 

  2. V.E. Zakharov, V. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer, Berlin, 1992)

    Google Scholar 

  3. S. Nazarenko, Wave Turbulence (Springer, Berlin, 2011)

    Google Scholar 

  4. A.C. Newell, B. Rumpf, Wave turbulence. Annu. Rev. Fluid Mech. 43, 59 (2011)

    Article  MathSciNet  Google Scholar 

  5. K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid. Mech. 12, 481 (1962)

    Google Scholar 

  6. D.J. Benney, A.C. Newell, The propagation of non-linear wave envelopes. J. Math. Phys. 46, 363 (1967)

    Article  MathSciNet  Google Scholar 

  7. V.E. Zakharov, N.N. Filonenko, Energy spectrum for stochastic oscillations of the surface of liquid. Sov. Phys. Dokl. 11, 881–884 (1967)

    Google Scholar 

  8. V. Shrira, S. Nazarenko (eds.), Advances in Wave Turbulence, vol. 83 (World Scientific, Singapore, 2013)

    Google Scholar 

  9. E. Falcon, C. Laroche, S. Fauve, Observation of gravity-capillary wave turbulence. Phys. Rev. Lett. 98, 094503 (2007)

    Google Scholar 

  10. E. Falcon, S. Fauve, C. Laroche, Observation of intermittency in wave turbulence. Phys. Rev. Lett. 98, 154501 (2007)

    Article  Google Scholar 

  11. E. Falcon, S.G. Roux, C. Laroche, On the origin of intermittency in wave turbulence. EPL (Eur. Lett.) 90, 34005 (2010)

    Article  Google Scholar 

  12. E. Falcon, S.G. Roux, B. Audit, Revealing intermittency in experimental data with steep power spectra. EPL (Eur. Lett.) 90, 50007 (2010)

    Article  Google Scholar 

  13. E. Falcon, S. Aumaître, C. Falcón, C. Laroche, S. Fauve, Fluctuations of energy flux in wave turbulence. Phys. Rev. Lett. 100, 064503 (2008)

    Article  Google Scholar 

  14. E. Herbert, N. Mordant, E. Falcon, Observation of the nonlinear dispersion relation and spatial statistics of wave turbulence on the surface of a fluid. Phys. Rev. Lett. 105, 144502 (2010)

    Article  Google Scholar 

  15. S. Aumaître, E. Falcon, S. Fauve, Fluctuations of the energy flux in wave turbulence, pp. 53–72, in [8]

    Google Scholar 

  16. C. Falcón, E. Falcon, Fluctuations of energy flux in a simple dissipative out-of-equilibrium system. Phys. Rev. E 79, 041110 (2009)

    Article  Google Scholar 

  17. A. García-Cid, P. Gutiérrez, C. Falcón, S. Aumaître, E. Falcon, Statistics of injected power on a bouncing ball subjected to a randomly vibrating piston. Phys. Rev. E 92, 032915 (2015)

    Article  Google Scholar 

  18. E. Falcon, C. Laroche, Observation of depth-induced properties in wave turbulence on the surface of a fluid. EPL (Eur. Lett.) 94, 34003 (2011)

    Article  Google Scholar 

  19. L. Deike, M. Berhanu, E. Falcon, Decay of capillary wave turbulence. Phys. Rev. E 85, 066311 (2012)

    Article  Google Scholar 

  20. M. Berhanu, E. Falcon, Space-time-resolved capillary wave turbulence. Phys. Rev. E 89, 033003 (2013)

    Article  Google Scholar 

  21. M. Berhanu, E. Falcon, L. Deike, Turbulence of capillary waves forced by steep gravity waves. J. Fluid Mech. 850, 803 (2018)

    Article  Google Scholar 

  22. F. Haudin, A. Cazaubiel, L. Deike, T. Jamin, E. Falcon, M. Berhanu, Experimental study of three-wave interactions among capillary-gravity surface waves. Phys. Rev. E 93, 043110 (2016)

    Article  Google Scholar 

  23. L. Deike, M. Berhanu, E. Falcon, Energy flux measurement from the dissipated energy in capillary wave turbulence. Phys. Rev. E 89, 023003 (2014)

    Article  Google Scholar 

  24. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon, F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence. J. Fluid Mech. 781, 196 (2015)

    Article  MathSciNet  Google Scholar 

  25. A.N. Pushkarev, V.E. Zakharov, Turbulence of capillary waves. Phys. Rev. Lett. 76, 3320 (1996)

    Article  Google Scholar 

  26. Y. Pan, D.K.P. Yue, Understanding discrete capillary-wave turbulence using a quasi-resonant kinetic equation. J. Fluid Mech. 816, R1 (2017)

    Article  MathSciNet  Google Scholar 

  27. L. Deike, D. Fuster, M. Berhanu, E. Falcon, Direct numerical simulations of capillary wave turbulence. Phys. Rev. Lett. 112, 234501 (2014)

    Article  Google Scholar 

  28. B. Issenmann, C. Laroche, E. Falcon, Wave turbulence in a two-layer fluid: coupling between free surface and interface waves. EPL (Eur. Lett.) 116, 64005 (2016)

    Article  Google Scholar 

  29. M.A. Donelan, J. Hamilton, W.H. Hui, Directional spectra of wind-generated waves. Philos. Trans. R. Soc. Lond. A 315, 509 (1985)

    Article  Google Scholar 

  30. P.A. Hwang, D.W. Wang, E.J. Walsh, W.B. Krabill, R.N. Swift, Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: spectral slope and dimensionless spectral coefficient? J. Phys. Ocean. 30, 2753 (2000)

    Article  Google Scholar 

  31. L. Romero, W.K. Melville, Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Ocean. 40, 441 (2010)

    Article  Google Scholar 

  32. F. Leckler, F. Ardhuin, C. Peureux, A. Benetazzo, F. Bergamasco, V. Dulov, Analysis and interpretation of frequency-wavenumber spectra of young wind waves. J. Phys. Ocean. 45, 10 (2015)

    Article  Google Scholar 

  33. S. Nazarenko, S. Lukaschuk, Wave turbulence on water surfaces. Annu. Rev. Condens. Matter Phys. 7, 61 (2016)

    Article  Google Scholar 

  34. P. Denissenko, S. Lukaschuk, S. Nazarenko, Gravity wave turbulence in a laboratory flume. Phys. Rev. Lett. 99, 014501 (2007)

    Article  Google Scholar 

  35. P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux, A. Maurel, Different regimes for water wave turbulence. Phys. Rev. Lett. 107, 214503 (2011)

    Article  Google Scholar 

  36. Q. Aubourg, A. Campagne, C. Peureux, F. Ardhuin, J. Sommeria, S. Viboud, N. Mordant, Three-wave and four-wave interactions in gravity wave turbulence. Phys. Rev. Fluids 2, 114802 (2017)

    Article  Google Scholar 

  37. B. Issenmann, E. Falcon, Gravity wave turbulence revealed by horizontal vibrations of the container. Phys. Rev. E 87, 011001(R) (2013)

    Article  Google Scholar 

  38. G. Michel, B. Semin, A. Cazaubiel, F. Haudin, T. Humbert, S. Lepot, F. Bonnefoy, M. Berhanu, E. Falcon, Self-similar gravity wave spectra resulting from the modulation of bound waves. Phys. Rev. Fluids 3, 054801 (2018)

    Article  Google Scholar 

  39. F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu, E. Falcon, Observation of resonant interactions among surface gravity waves. J. Fluid Mech. (Rapids) 805, R3 (2016)

    Article  MathSciNet  Google Scholar 

  40. M.S. Longuet-Higgins, N.D. Smith, An experiment on third-order resonant wave interactions. J. Fluid Mech. 25, 417 (1966)

    Article  Google Scholar 

  41. L.F. McGoldrick, O.M. Phillips, N.E. Huang, T.H. Hodgson, Measurements of third-order resonant wave interactions. J. Fluid Mech. 25, 437 (1966)

    Article  Google Scholar 

  42. H. Tomita, Theoretical and experimental investigations of interaction among deep-water gravity waves. Rep. Ship Res. Inst. 26, 251 (1989)

    Google Scholar 

  43. F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu, E. Falcon, Experimental observation of four-wave resonant interactions in a wave basin. La Houille Blanche 5, 56 (2017)

    Article  Google Scholar 

  44. S.Y. Annenkov, V.I. Shrira, Direct numerical simulation of downshift and inverse cascade for water wave turbulence. Phys. Rev. Lett. 96, 204501 (2006); A.O. Korotkevitch, Simultaneous numerical simulation of direct and inverse cascades in wave turbulence. Phys. Rev. Lett. 101, 074501 (2008)

    Google Scholar 

  45. L. Deike, C. Laroche, E. Falcon, Experimental study of the inverse cascade in gravity wave turbulence. EPL (Eur. Lett.) 96, 34004 (2011)

    Article  Google Scholar 

  46. C. Falcón, E. Falcon, U. Bortolozzo, S. Fauve, Capillary wave turbulence on a spherical fluid surface in zero gravity. EPL (Eur. Lett.) 86, 14002 (2009)

    Google Scholar 

  47. S. Fauve, E. Falcon, Gravity-capillary wave turbulence, in Report to COSPAR (World Committee for Space Research), 37th Scientific Assembly, 13–20 July 2008, Montréal, Canada, CNES Ed. (2008), pp. 90–91

    Google Scholar 

  48. M. Berhanu, E. Falcon, S. Fauve, Wave turbulence in microgravity, in Report to COSPAR (World Committee for Space Research), 42th Scientific Assembly, 14–22 July 2018, Pasadena, USA, CNES Ed. (2018), pp. 66–67

    Google Scholar 

  49. G. Michel, F. Pétrélis, S. Fauve, Observation of thermal equilibrium in capillary wave turbulence. Phys. Rev. Lett. 118, 144502 (2017)

    Google Scholar 

  50. L. Deike, J.-C. Bacri, E. Falcon, Nonlinear waves on the surface of a fluid covered by an elastic sheet. J. Fluid Mech. 733, 394 (2013)

    Google Scholar 

  51. L. Deike, M. Berhanu, E. Falcon, Observation of hydroelastic three-wave interactions. Phys. Rev. Fluids 2, 064803 (2017)

    Google Scholar 

  52. F. Boyer, E. Falcon, Wave turbulence on the surface of a ferrofluid in a magnetic field. Phys. Rev. Lett. 101, 244502 (2008)

    Google Scholar 

  53. S. Dorbolo, E. Falcon, Wave turbulence on the surface of a ferrofluid in a horizontal magnetic field. Phys. Rev. E 83, 046303 (2011)

    Google Scholar 

Download references

Acknowledgments

I thank all my co-authors quoted in the references of this article. This work was supported by the French National Research Agency via ANR DYSTURB project No. ANR-17-CE30-0004 (2017-2021), ANR TURBULON project No. ANR-12-BS04-0005 (2012-2016) and ANR TURBONDE project No. ANR-07-BLAN-0246 (2007-2011). The support of Novespace during Parabolic Flight Campaigns is acknowledged, as well as partial financial support by French National Space Agency (CNES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Falcon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falcon, E. (2019). Wave Turbulence: A Set of Stochastic Nonlinear Waves in Interaction. In: In, V., Longhini, P., Palacios, A. (eds) Proceedings of the 5th International Conference on Applications in Nonlinear Dynamics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-10892-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10892-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10891-5

  • Online ISBN: 978-3-030-10892-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics