Skip to main content

Weyl Asymptotics and Random Perturbations in a One-Dimensional Semi-classical Case

  • Chapter
  • First Online:
Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations

Part of the book series: Pseudo-Differential Operators ((PDO,volume 14))

  • 701 Accesses

Abstract

We consider a simple model operator P in dimension 1 and show how random perturbations give rise to Weyl asymptotics in the interior of the range of P. We follow rather closely the work of Hager (Ann Henri Poincaré 7(6):1035–1064, 2006) with some input also from Bordeaux Montrieux (Loi de Weyl presque sûreet résolvante pour des opérateurs différentiels nonautoadjoints, thèse, CMLS, Ecole Polytechnique, 2008) and Hager–Sjöstrand (Math Ann 342(1):177–243, 2008). Some of the general ideas appear perhaps more clearly in this special situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The choice of Gaussian random variables is convenient in order to formulate a less technical result. In Chap. 15 more general classes of perturbations will be treated, also in higher dimensions.

  2. 2.

    We write a ≍ b, when a, b are real numbers with the same sign, such that \(|a|={\mathcal {O}}(|b|)\) and \(|b|={\mathcal {O}}(|a|)\). This notion has a natural extension to the case when a, b are positive Radon measures on the same set in R n.

  3. 3.

    If \({\mathcal {F}}\) is a seminormed space, we write \(b(h)\sim b_0+hb_1+\cdots \mbox{ in }{\mathcal {F}}\), if for every seminorm q and every N ∈N, we have \(q(b-(b_0+hb_1+\cdots +b_Nh^N))={\mathcal {O}}(h^{N+1})\).

References

  1. L. Ahlfors, Complex analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd edn. International Series in Pure and Applied Mathematics (McGraw-Hill Book Co., New York, 1978)

    Google Scholar 

  2. W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, thèse, CMLS, Ecole Polytechnique, 2008. https://pastel.archives-ouvertes.fr/pastel-00005367

  3. A. Grigis, J. Sjöstrand, Microlocal Analysis for Differential Operators. London Mathematical Society Lecture Notes Series, vol. 196 (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  4. M. Hager, Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle. Ann. Fac. Sci. Toulouse Math. 15(2), 243–280 (2006)

    Article  MathSciNet  Google Scholar 

  5. M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré 7(6), 1035–1064 (2006)

    Article  MathSciNet  Google Scholar 

  6. M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Ann. 342(1), 177–243 (2008). http://arxiv.org/abs/math/0601381

    Article  MathSciNet  Google Scholar 

  7. O. Kallenberg, Foundations of Modern Probability. Probability and Its Applications (New York) (Springer, New York, 1997)

    MATH  Google Scholar 

  8. J. Sjöstrand, Resonances for bottles and trace formulae. Math. Nachr. 221, 95–149 (2001)

    Article  MathSciNet  Google Scholar 

  9. M. Vogel, The precise shape of the eigenvalue intensity for a class of non-selfadjoint operators under random perturbations. Ann. Henri Poincaré 18(2), 435–517 (2017). http://arxiv.org/abs/1401.8134

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sjöstrand, J. (2019). Weyl Asymptotics and Random Perturbations in a One-Dimensional Semi-classical Case. In: Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations. Pseudo-Differential Operators, vol 14. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10819-9_3

Download citation

Publish with us

Policies and ethics