Numerical Illustrations

  • Johannes Sjöstrand
Part of the Pseudo-Differential Operators book series (PDO, volume 14)


In this chapter we give some numerical illustrations to the results about the asymptotic distribution of eigenvalues. Such calculations have already been carried out by many people, Trefethen, Trefethen and Embree, Davies, Davies and Hager, Zworski and many others. Numerical calculations with special attention to Weyl asymptotics have been carried out by Hager, Bordeaux Montrieux, Vogel. Many of the illustrations below are therefore well-known and even though we wrote our own Matlab programs, we have clearly benefitted from the preceding works.


  1. 16.
    W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, thèse, CMLS, Ecole Polytechnique, 2008.
  2. 33.
    E.B. Davies, Semi-classical states for non-self-adjoint Schrödinger operators. Commun. Math. Phys. 200(1), 35–41 (1999)CrossRefGoogle Scholar
  3. 35.
    E.B. Davies, Pseudopectra of differential operators. J. Operator Theory 43, 243–262 (2000)MathSciNetGoogle Scholar
  4. 38.
    E.B. Davies, M. Hager, Perturbations of Jordan matrices. J. Approx. Theory 156(1), 82–94 (2009)MathSciNetCrossRefGoogle Scholar
  5. 54.
    M. Hager, Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle. Ann. Fac. Sci. Toulouse Math. 15(2), 243–280 (2006)MathSciNetCrossRefGoogle Scholar
  6. 55.
    M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré 7(6), 1035–1064 (2006)MathSciNetCrossRefGoogle Scholar
  7. 67.
    M. Hitrik, Boundary spectral behavior for semiclassical operators in dimension one. Int. Math. Res. Not. 2004(64), 3417–3438 (2004)MathSciNetCrossRefGoogle Scholar
  8. 73.
    M. Hitrik, J. Sjöstrand, Rational invariant tori and band edge spectra for non-selfadjoint operators. J. Eur. Math. Soc. 20(2), 391–457 (2018). MathSciNetCrossRefGoogle Scholar
  9. 145.
    J. Sjöstrand, M. Vogel, Interior eigenvalue density of large bi-diagonal matrices subject to random perturbations, in Proceedings of the Conference “Microlocal Analysis and Singular Perturbation Theory”, RIMS, Kyoto University, October 5–9, 2015, RIMS Conference Proceedings series “RIMS Kokyuroku Bessatsu” (2015).
  10. 146.
    J. Sjöstrand, M. Vogel, Large bi-diagonal matrices and random perturbations. J. Spectr. Theory 6(4), 977–1020 (2016). MathSciNetCrossRefGoogle Scholar
  11. 147.
    J. Sjöstrand, M. Vogel, Interior eigenvalue density of Jordan matrices with random perturbations. In Analysis Meets Geometry: A Tribute to Mikael Passare. Trends in Mathematics, pp. 439–466 (Springer, Cham, 2017). Google Scholar
  12. 151.
    L.N. Trefethen, Pseudospectra of linear operators. SIAM Rev. 39(3), 383–406 (1997)MathSciNetCrossRefGoogle Scholar
  13. 152.
    L.N. Trefethen, M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators (Princeton University Press, Princeton, 2005)Google Scholar
  14. 155.
    M. Vogel, The precise shape of the eigenvalue intensity for a class of non-selfadjoint operators under random perturbations. Ann. Henri Poincaré 18(2), 435–517 (2017). MathSciNetCrossRefGoogle Scholar
  15. 156.
    M. Vogel, Two point eigenvalue correlation for a class of non-selfadjoint operators under random perturbations. Commun. Math. Phys. 350(1), 31–78 (2017). MathSciNetCrossRefGoogle Scholar
  16. 161.
    M. Zworski, A remark on a paper of E. B. Davies: “Semi-classical states for non-self-adjoint Schrödinger operators”. Proc. Am. Math. Soc. 129(10), 2955–2957 (2001)Google Scholar
  17. 162.
    M. Zworski, Numerical linear algebra and solvability of partial differential equations. Commun. Math. Phys. 229(2), 293–307 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes Sjöstrand
    • 1
  1. 1.Université de Bourgogne Franche-ComtéDijonFrance

Personalised recommendations