Advertisement

Plasma-Derived Immunoglobulins

Chapter

Abstract

Plasma-derived immunoglobulins are key constituents of adaptive humoral immunity. Five isotypes (IgG, IgM, IgA, IgD and IgE) with diverse effector functions are found in human plasma; together they ensure protection from infection. However, only one isotype, namely, IgG, has been developed into a pharmaceutical product. It is currently used for replacement therapy in primary and secondary immunodeficiency disorders and for immunomodulatory therapy in autoimmune inflammatory diseases, especially of the nervous system and the skin. In replacement therapy the main function of IgG is to neutralise pathogens and thus prevent infections. In contrast, many diverse effector mechanisms of IgG cooperate to reduce inflammation in autoimmune diseases. The original routes for administration of IgG were intramuscular injection or slow subcutaneous infusion. Thereafter, intramuscular administration became the choice of therapy for patients with primary immunodeficiency (PID) but showed significant issues with tolerability and systemic adverse events. Many improvements in purification processes and formulations now allow intravenous immunoglobulin (IVIG) and subcutaneous immunoglobulin (SCIG) applications with improved safety/tolerability, reduced adverse reaction profiles and increased convenience for patients. Current IVIG and SCIG products are very safe with regard to the risk of transmitting blood-borne infections; this is due to rigorous donor selection, plasma donation testing and various measures during manufacturing that ensure removal of pathogens.

Notes

Acknowledgements

The authors thank Toby Simon, CSL Behring LLC, King of Prussia, PA, USA, for his advice and assistance in the preparation of this book chapter. Editorial assistance was provided by Fishawack Communications GmbH, a member of the Fishawack Group of Companies.

References

  1. 1.
    Baerenwaldt A, Biburger M, Nimmerjahn F. Mechanisms of action of intravenous immunoglobulins. Expert Rev Clin Immunol. 2010;6:425–34.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Edelman GM. Antibody structure and molecular immunology. Science. 1973;180:830–40.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med. 2000;343:37–49.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    von Behring E A. Speech at the Nobel Banquet in Stockholm, December 10, 1901. 2015. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1901/behring-facts html.
  5. 5.
    Heard K, O’Malley GF, Dart RC. Antivenom therapy in the Americas. Drugs. 1999;58:5–15.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Newcombe C, Newcombe AR. Antibody production: polyclonal-derived biotherapeutics. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;848:2–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Eibl MM. History of immunoglobulin replacement. Immunol Allergy Clin North Am. 2008;28:737–64.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9:722–8.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Chapel H, Gardulf A. Subcutaneous immunoglobulin replacement therapy: the European experience. Curr Opin Allergy Clin Immunol. 2013;13:623–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cai K, Gierman TM, Hotta J, et al. Ensuring the biologic safety of plasma-derived therapeutic proteins: detection, inactivation, and removal of pathogens. Biodrugs. 2005;19:79–96.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Jolles S, Sewell WA, Misbah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol. 2005;142:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Arnson Y, Shoenfeld Y, Amita H. Intravenous immunoglobulin therapy for autoimmune diseases. Autoimmunity. 2009;42:553–60.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Danieli MG, Gambini S, Pettinari L, et al. Impact of treatment on survival in polymyositis and dermatomyositis. A single-centre long-term follow-up study. Autoimmun Rev. 2014;13:1048–54.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13:176–89.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Abbas AK. Cellular and molecular immunology. In: Abbas AK, Lichtman AH, Pillai S, editors. Cellular and molecular immunology. 6th ed. Philadelphia, PA: Saunders; 2009. p. 326–8.Google Scholar
  16. 16.
    Gillis C, Gouel-Cheron A, Jonsson F, et al. Contribution of human FcgammaRs to disease with evidence from human polymorphisms and transgenic animal studies. Front Immunol. 2014;5:254.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Male D, Brostoff J, Roth D, et al. Immunology. 7th ed. Maryland Heights, MO: Mosby Elsevier; 2006.Google Scholar
  18. 18.
    Murphy KM, Travers P, Walport M. Janeway’s immunobiology. 7th ed. New York: Garland Publishing; 2008. p. 410.Google Scholar
  19. 19.
    Monteiro RC. Role of IgA and IgA fc receptors in inflammation. J Clin Immunol. 2010;30:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Rossato E, Ben MS, Kanamaru Y, et al. Reversal of arthritis by human monomeric IgA through receptor mediated SHP-1 inhibitory pathway. Arthritis Rheumatol. 2015;67:1766–77.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, et al. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol. 2001;167:2861–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Feinstein A, Munn EA. Conformation of the free and antigen-bound IgM antibody molecules. Nature. 1969;224:1307–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hjelm F, Carlsson F, Getahun A, et al. Antibody-mediated regulation of the immune response. Scand J Immunol. 2006;64:177–84.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Schwartz-Albiez R, Monteiro RC, Rodriguez M, et al. Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clin Exp Immunol. 2009;158(Suppl 1):43–50.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lutz HU, Binder CJ, Kaveri S. Naturally occurring auto-antibodies in homeostasis and disease. Trends Immunol. 2008;30:43–51.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Castro CD, Flajnik MF. Putting J chain back on the map: how might its expression define plasma cell development? J Immunol. 2014;193:3248–55.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Corthesy B. Role of secretory IgA in infection and maintenance of homeostasis. Autoimmun Rev. 2013;12:661–5.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Perrier C, Sprenger N, Corthesy B. Glycans on secretory component participate in innate protection against mucosal pathogens. J Biol Chem. 2006;281:14280–7.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chen K, Cerutti A. The function and regulation of immunoglobulin D. Curr Opin Immunol. 2011;23:345–52.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Edholm ES, Bengten E, Wilson M. Insights into the function of IgD. Dev Comp Immunol. 2011;35:1309–16.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Bell RG. IgE, allergies and helminth parasites: a new perspective on an old conundrum. Immunol Cell Biol. 1996;74:337–45.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Arnold JN, Wormald MR, Sim RB, et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Maverakis E, Kim K, Shimoda M, et al. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun. 2015;57:1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Plomp R, Dekkers G, Rombouts Y, et al. Hinge-region O-glycosylation of human immunoglobulin G3 (IgG3). Mol Cell Proteomics. 2015;14:1373–84.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jefferis R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci. 2009b;30:356–62.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670–3.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Nagelkerke SQ, Kuijpers TW. Immunomodulation by IVIg and the role of Fc-gamma receptors: classic mechanisms of action after all? Front Immunol. 2014;5:674.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Jefferis R. Glycosylation of antibody therapeutics: optimisation for purpose. Methods Mol Biol. 2009a;483:223–38.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    van de Geijn FE, Wuhrer M, Selman MH, et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res Ther. 2009;11:R193.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Royle L, Roos A, Harvey DJ, et al. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem. 2003;278:20140–53.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Woof JM, Russell MW. Structure and function relationships in IgA. Mucosal Immunol. 2011;4:590–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog Allergy. 1969;13:1–110.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Bonilla FA. Pharmacokinetics of immunoglobulin administered via intravenous or subcutaneous routes. Immunol Allergy Clin North Am. 2008b;28:803–19.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Morell A. Pharmacokinetics of intravenous immunoglobulin preparations. In: Lee ML, Strand V, editors. Intravenous immunoglobulins in clinical practice. New York: Marcel Dekker Inc.; 1997. p. 1–18.Google Scholar
  45. 45.
    Koleba T, Ensom MHH. Pharmacokinetics of intravenous immunoglobulin: a systematic review. Pharmacotherapy. 2006;26:813–27.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wasserman RL, Church JA, Peter HH, et al. Pharmacokinetics of a new 10% intravenous immunoglobulin in patients receiving replacement therapy for primary immunodeficiency. Eur J Pharm Sci. 2009;37:272–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kontermann RE. Strategies to extend plasma half-lives of recombinant antibodies. Biodrugs. 2009;23:93–109.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715–25.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Rath T, Kuo TT, Baker K, et al. The immunologic functions of the neonatal Fc receptor for IgG. J Clin Immunol. 2013;33(Suppl 1):S9–17.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93:2645–68.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Weflen AW, Baier N, Tang QJ, et al. Multivalent immune complexes divert FcRn to lysosomes by exclusion from recycling sorting tubules. Mol Biol Cell. 2013;24:2398–405.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Passot C, Azzopardi N, Renault S, et al. Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies. MAbs. 2013;5:614–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sachs UJ, Socher I, Braeunlich CG, et al. A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor alpha-chain promoter. Immunology. 2006;119:83–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wani MA, Haynes LD, Kim J, et al. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci U S A. 2006;103:5084–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bleeker WK, Teeling JL, Hack E. Accelerated autoantibody clearance by intravenous immunoglobulin therapy: studies in experimental models to determine the magnitude and time course of effect. Blood. 2001;98:3136–42.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Seite JF, Hillion S, Harbonnier T, et al. Review: intravenous immunoglobulin and B cells: when the product regulates the producer. Arthritis Rheumatol. 2015;67:595–603.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Wurster U, Haas J. Passage of intravenous immunoglobulin and interaction with the CNS. J Neurol Neurosurg Psychiatry. 2009;57:21–5.CrossRefGoogle Scholar
  58. 58.
    Gasparoni A, Avanzini A, Ravagni PF, et al. IgG subclasses compared in maternal and cord serum and breast milk. Arch Dis Child. 1992;67:41–3.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kane SV, Acquah LA. Placental transport of immunoglobulins: a clinical review for gastroenterologists who prescribe monoclonal antibodies to women during conception and pregnancy. Am J Gastroenterol. 2009;104:228–33.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Berger M. Subcutaneous administration of IgG. Immunol Allergy Clin North Am. 2008b;28:779–802.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Berger M, Jolles S, Orange JS, et al. Bioavailability of IgG administered by the subcutaneous route. J Clin Immunol. 2013a;33:984–90.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sidhu J, Rojavin M, Pfister M, et al. Enhancing patient flexibility of subcutaneous immunoglobulin G dosing: pharmacokinetic outcomes of various maintenance and loading regimens in the treatment of primary immunodeficiency. Biol Ther. 2014;4:41–55.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Landersdorfer CB, Bexon M, Edelman J, et al. Pharmacokinetic modeling and simulation of biweekly subcutaneous immunoglobulin dosing in primary immunodeficiency. Postgrad Med. 2013;125:53–61.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Moore ML, Quinn JM. Subcutaneous immunoglobulin replacement therapy for primary antibody deficiency: advancements into the 21st century. Ann Allergy Asthma Immunol. 2008;101:114–21.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zhao L, Ji P, Li Z, et al. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J Clin Pharmacol. 2013;53:314–25.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Losonsky GA, Johnson JP, Winklestein JA, et al. Oral administration of human serum immunoglobulin in immunodeficient patients with viral gastroenteritis. A pharmacokinetic and functional analysis. J Clin Invest. 1985;76:2362–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kelly CP, Chetham S, Keates S, et al. Survival of anti-Clostridium difficile bovine immunoglobulin concentrate in the human gastrointestinal tract. Antimicrob Agents Chemother. 1997;41:236–41.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Warny M, Fatimi A, Bostwick EF, et al. Bovine immunoglobulin concentrate-Clostridium difficile retains C difficile toxin neutralising activity after passage through the human stomach and small intestine. Gut. 1999;44:212–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Morell A, Skvaril F, Noseda G, et al. Metabolic properties of human IgA subclasses. Clin Exp Immunol. 1973;13:521–8.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Dechant M, Valerius T. IgA antibodies for cancer therapy. Crit Rev Oncol Hematol. 2001;39:69–77.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med. 1987;106:892–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Longet S, Miled S, Lotscher M, et al. Human plasma-derived polymeric IgA and IgM antibodies associate with secretory component to yield biologically active secretory-like antibodies. J Biol Chem. 2013;288:4085–94.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Behring EA, Kitasato S. Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Tieren. Dtsch Med Wochenschr. 1890;49:1113–4.Google Scholar
  74. 74.
    Stephan W. Beseitigung der Komplementfixierung von Gamma-Globulin durch chemische Modifizierung mit Beta-Propiolacton. Z Klin Chem Klein Biochem. 1969;7:282–6.Google Scholar
  75. 75.
    Radosevich M, Burnouf T. Intravenous immunoglobulin G: trends in production methods, quality control and quality assurance. Vox Sang. 2010;98:12–28.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Komenda M, Stadler D, Malinas T, et al. Assessment of the ability of the Privigen(R) purification process to deplete thrombogenic factor XIa from plasma. Vox Sang. 2014;107:26–36.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Hoefferer L, Glauser I, Gaida A, et al. Isoagglutinin reduction by a dedicated immunoaffinity chromatography step in the manufacturing process of human immunoglobulin products. Transfusion. 2015;55(Suppl 2):S117–21.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Romberg V, Hoefferer L, El Menyawi I. Effects of the manufacturing process on the anti-A isoagglutinin titers in intravenous immunoglobulin products. Transfusion. 2015;55(Suppl 2):S105–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Siani B, Willimann K, Wymann S, et al. Donor screening reduces the isoagglutinin titer in immunoglobulin products. Transfusion. 2015;55(Suppl 2):S95–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Bolli R, Woodtli K, Bartschi M, et al. l-Proline reduces IgG dimer content and enhances the stability of intravenous immunoglobulin (IVIG) solutions. Biologicals. 2010;38:150–7.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Cramer M, Frei R, Sebald A, et al. Stability over 36 months of a new liquid 10% polyclonal immunoglobulin product (IgPro10, Privigen©) stabilized with L-proline. Vox Sang. 2009;96:219–25.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Tankersley DL. Dimer formation in immunoglobulin preparations and speculations on the mechanism of action of intravenous immune globulin in autoimmune disease. Immunol Rev. 1994;139:159–72.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Tankersley DL, Preston MS, Finlayson JS. Immunoglobulin G dimer: an idiotype/anti-idiotype complex. Mol Immunol. 1988;25:41–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kroez M, Kanzy EJ, Gronski P, et al. Hypotension with intravenous immunoglobulin therapy: importance of pH and dimer formation. Biologicals. 2003;31:277–86.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Spycher MO, Bolli R, Hodler G, et al. Well-tolerated liquid intravenous immunoglobulin G preparations (IVIG) have a low immunoglobulin G dimer (IgG-dimer) content. J Autoimmun. 1996;96(Suppl 1):96.Google Scholar
  86. 86.
    Misbah S, Sturzenegger MH, Borte M, et al. Subcutaneous immunoglobulin: opportunities and outlook. Clin Exp Immunol. 2009;158(Suppl 1):51–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Berger M. Principles of and advances in immunoglobulin replacement therapy for primary immunodeficiency. Immunol Allergy Clin North Am. 2008a;28:413–37.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Fernandez-Cruz E, Kaveri SV, Peter HH, et al. 6th International Immunoglobulin Symposium: poster presentations. Clin Exp Immunol. 2009;158(Suppl 1):60–7.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Stiehm ER, Keller MA, Vyas GN. Preparation and use of therapeutic antibodies primarily of human origin. Biologicals. 2008;36:363–74.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Stucki M, Moudry R, Kempf C, et al. Characterisation of a chromatographically produced anti-D immunoglobulin product. J Chromatogr B Biomed Sci Appl. 1997;700:241–8.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Gaspar HB, Cooray S, Gilmour KC, et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med. 2011;3:97ra80.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Hacein-Bey-Abina S, Pai SY, Gaspar HB, et al. A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med. 2014;371:1407–17.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Elliott DE, Weinstock JV. Helminthic therapy: using worms to treat immune-mediated disease. Adv Exp Med Biol. 2009;666:157–66.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    DeKosky BJ, Kojima T, Rodin A, et al. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat Med. 2015;21:86–91.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    De Groot AS, Moise L, McMurry JA, et al. Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes”. Blood. 2008;112:3303–11.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Cousens LP, Su Y, McClaine E, et al. Application of IgG-derived natural Treg epitopes (IgG Tregitopes) to antigen-specific tolerance induction in a murine model of type 1 diabetes. J Diabetes Res. 2013;2013:621693.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Jain A, Olsen HS, Vyzasatya R, et al. Fully recombinant IgG2a Fc multimers (stradomers) effectively treat collagen-induced arthritis and prevent idiopathic thrombocytopenic purpura in mice. Arthritis Res Ther. 2012;14:R192.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Niknami M, Wang MX, Nguyen T, et al. Beneficial effect of a multimerized immunoglobulin Fc in an animal model of inflammatory neuropathy (experimental autoimmune neuritis). J Peripher Nerv Syst. 2013;18:141–52.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Thiruppathi M, Sheng JR, Li L, et al. Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis. J Autoimmun. 2014;52:64–73.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mekhaiel DN, Czajkowsky DM, Andersen JT, et al. Polymeric human Fc-fusion proteins with modified effector functions. Sci Rep. 2011;1:124.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Patel DA, Puig-Canto A, Challa DK, et al. Neonatal Fc receptor blockade by Fc engineering ameliorates arthritis in a murine model. J Immunol. 2011;187:1015–22.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Werwitzke S, Trick D, Sondermann P, et al. Treatment of lupus-prone NZB/NZW F1 mice with recombinant soluble Fc gamma receptor II (CD32). Ann Rheum Dis. 2008;67:154–61.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Berger M. A history of immune globulin therapy, from the Harvard crash program to monoclonal antibodies. Curr Allergy Asthma Rep. 2002;2:368–78.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Imbach P. 30 years of immunomodulation by intravenous immunoglobulin. Immunotherapy. 2012;4:651–4.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Berger M. Choices in IgG replacement therapy for primary immune deficiency diseases: subcutaneous IgG vs. intravenous IgG and selecting an optimal dose. Curr Opin Allergy Clin Immunol. 2011;11:532–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Eijkhout HW, van Der Meer JW, Kallenberg CG, et al. The effect of two different dosages of intravenous immunoglobulin on the incidence of recurrent infections in patients with primary hypogammaglobulinemia. A randomized, double-blind, multicenter crossover trial. Ann Intern Med. 2001;135:165–74.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Jolles S, Orange JS, Gardulf A, et al. Current treatment options with immunoglobulin G for the individualization of care in patients with primary immunodeficiency disease. Clin Exp Immunol. 2015;179:146–60.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Roifman CM, Levison H, Gelfand EW. High-dose versus low-dose intravenous immunoglobulin in hypogammaglobulinaemia and chronic lung disease. Lancet. 1987;1:1075–7.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ballow M. The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. J Allergy Clin Immunol. 2011;127:315–23.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012;367:2015–25.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Buckley RH, editor. Immune Deficiency Foundation diagnostic and clinical care guidelines for primary immunodeficiency diseases. 3rd ed. Towson, MD: Immune Deficiency Foundation; 2015. p. 4–7.Google Scholar
  112. 112.
    Hernandez-Trujillo V. New genetic discoveries and primary immune deficiencies. Clin Rev Allergy Immunol. 2014;46:145–53.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Parvaneh N, Casanova JL, Notarangelo LD, et al. Primary immunodeficiencies: a rapidly evolving story. J Allergy Clin Immunol. 2013;131:314–23.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Winkelstein JA, Marino MC, Lederman HM, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore). 2006;85:193–202.CrossRefGoogle Scholar
  115. 115.
    Orange JS, Belohradsky BH, Berger M, et al. Evaluation of correlation between dose and clinical outcomes in subcutaneous immunoglobulin replacement therapy. Clin Exp Immunol. 2012b;169:172–81.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Orange JS, Grossman WJ, Navickis RJ, et al. Impact of trough IgG on pneumonia incidence in primary immunodeficiency: a meta-analysis of clinical studies. Clin Immunol. 2010;137:21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Bonagura VR, Marchlewski R, Cox A, et al. Biologic IgG level in primary immunodeficiency disease: the IgG level that protects against recurrent infection. J Allergy Clin Immunol. 2008;122:210–2.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Lucas M, Lee M, Lortan J, et al. Infection outcomes in patients with common variable immunodeficiency disorders: relationship to immunoglobulin therapy over 22 years. J Allergy Clin Immunol. 2010;125:1354–60.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Chen Y, Stirling RG, Paul E, et al. Longitudinal decline in lung function in patients with primary immunoglobulin deficiencies. J Allergy Clin Immunol. 2011;127:1414–7.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Jolles S. The variable in common variable immunodeficiency: a disease of complex phenotypes. J Allergy Clin Immunol Pract. 2013;1:545–56.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Orange JS, Glessner JT, Resnick E, et al. Genome-wide association identifies diverse causes of common variable immunodeficiency. J Allergy Clin Immunol. 2011;127:1360–7.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Resnick ES, Moshier EL, Godbold JH, et al. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119:1650–7.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Gathmann B, Mahlaoui N, Gerard L, et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134:116–26.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Chase NM, Verbsky JW, Hintermeyer MK, et al. Use of combination chemotherapy for treatment of granulomatous and lymphocytic interstitial lung disease (GLILD) in patients with common variable immunodeficiency (CVID). J Clin Immunol. 2013;33:30–9.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Conley ME, Dobbs AK, Farmer DM, et al. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol. 2009;27:199–227.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Qamar N, Fuleihan RL. The hyper IgM syndromes. Clin Rev Allergy Immunol. 2014;46:120–30.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Ambrose M, Gatti RA. Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood. 2013;121:4036–45.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Buchbinder D, Nugent DJ, Fillipovich AH. Wiskott-Aldrich syndrome: diagnosis, current management, and emerging treatments. Appl Clin Genet. 2014;7:55–66.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Dvorak CC, Cowan MJ, Logan BR, et al. The natural history of children with severe combined immunodeficiency: baseline features of the first fifty patients of the primary immune deficiency treatment consortium prospective study 6901. J Clin Immunol. 2013;33:1156–64.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Boisson B, Quartier P, Casanova JL. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind. Curr Opin Immunol. 2015;32:90–105.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Kashani S, Carr TF, Grammer LC, et al. Clinical characteristics of adults with chronic rhinosinusitis and specific antibody deficiency. J Allergy Clin Immunol Pract. 2015;3:236–42.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Orange JS, Ballow M, Stiehm ER, et al. Use and interpretation of diagnostic vaccination in primary immunodeficiency: a working group report of the Basic and Clinical Immunology Interest Section of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2012a;130:S1–24.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Stevens WW, Peters AT. Immunodeficiency in chronic sinusitis: recognition and treatment. Am J Rhinol Allergy. 2015;29:115–8.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Makatsori M, Kiani-Alikhan S, Manson AL, et al. Hypogammaglobulinaemia after rituximab treatment-incidence and outcomes. QJM. 2014;107:821–8.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    National Blood Authority Australia. Annual report 2013–14. 2014. Available at: http://www.blood.gov.au/nba-annual-report-2013-14. Accessed 31 July 2015.
  136. 136.
    Roberts DM, Jones RB, Smith RM, et al. Immunoglobulin G replacement for the treatment of infective complications of rituximab-associated hypogammaglobulinemia in autoimmune disease: a case series. J Autoimmun. 2015;57:24–9.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Boddana P, Webb LH, Unsworth J, et al. Hypogammaglobulinemia and bronchiectasis in mycophenolate mofetil-treated renal transplant recipients: an emerging clinical phenomenon? Clin Transpl. 2011;25:417–9.CrossRefGoogle Scholar
  138. 138.
    Bussel JB, Graziano JN, Kimberly RP, et al. Intravenous anti-D treatment of immune thrombocytopenic purpura: analysis of efficacy, toxicity, and mechanism of effect. Blood. 1991;77:1884–93.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Neunert C, Lim W, Crowther M, et al. The American Society of Hematology 2011 evidence-based practice guideline for immune thrombocytopenia. Blood. 2011;117:4190–207.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Provan D, Stasi R, Newland AC, et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood. 2010;115:168–86.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Bussel JB, Hilgartner MW. The use and mechanism of action of intravenous immunoglobulin in the treatment of immune haematologic disease. Br J Haematol. 1984;56:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Fehr J, Hofmann V, Kappeler U. Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high-dose intravenous gamma globulin. N Engl J Med. 1982;306:1254–8.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Rowley AH, Shulman ST. Pathogenesis and management of Kawasaki disease. Expert Rev Anti Infect Ther. 2010;8:197–203.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Terai M, Shulman ST. Prevalence of coronary artery abnormalities in Kawasaki disease is highly dependent on gamma globulin dose but independent of salicylate dose. J Pediatr. 1997;131:888–93.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Newburger JW, Takahashi M, Beiser AS, et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl J Med. 1991;324:1633–9.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Yuki N, Hartung HP. Guillain-Barre syndrome. N Engl J Med. 2012;366:2294–304.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Hughes RA, Swan AV, Raphael JC, et al. Immunotherapy for Guillain-Barre syndrome: a systematic review. Brain. 2007;130:2245–57.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    van Doorn PA, Brand A, Vermeulen M. Anti-neuroblastoma cell line antibodies in inflammatory demyelinating polyneuropathy: inhibition in vitro and in vivo by IV immunoglobulin. Neurology. 1988;38:1592–5.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Zhang G, Lopez PH, Li CY, et al. Anti-ganglioside antibody-mediated neuronal cytotoxicity and its protection by intravenous immunoglobulin: implications for immune neuropathies. Brain. 2004;127:1085–100.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Hughes RA, Swan AV, van Doorn PA. Intravenous immunoglobulin for Guillain-Barre syndrome. Cochrane Database Syst Rev. 2014;(9):CD002063.Google Scholar
  151. 151.
    Hughes RA, Wijdicks EF, Barohn R, et al. Practice parameter: immunotherapy for Guillain-Barre syndrome: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2003;61:736–40.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Kuitwaard K, de GJ, Tio-Gillen AP, et al. Pharmacokinetics of intravenous immunoglobulin and outcome in Guillain-Barre syndrome. Ann Neurol. 2009;66:597–603.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Hughes RA, Donofrio P, Bril V, et al. Intravenous immune globulin (10% caprylate-chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomised placebo-controlled trial. Lancet Neurol. 2008;7:136–44.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Peltier AC, Donofrio PD. Chronic inflammatory demyelinating polyradiculoneuropathy: from bench to bedside. Semin Neurol. 2012;32:187–95.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Berger M, McCallus DE, Lin CS. Rapid and reversible responses to IVIG in autoimmune neuromuscular diseases suggest mechanisms of action involving competition with functionally important autoantibodies. J Peripher Nerv Syst. 2013b;18:275–96.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Broyles R, Rodden L, Riley P, et al. Variability in intravenous immunoglobulin G regimens for autoimmune neuromuscular disorders. Postgrad Med. 2013;125:65–72.PubMedCrossRefGoogle Scholar
  157. 157.
    Lin CS, Krishnan AV, Park SB, et al. Modulatory effects on axonal function after intravenous immunoglobulin therapy in chronic inflammatory demyelinating polyneuropathy. Arch Neurol. 2011;68:862–9.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society—first revision. J Peripher Nerv Syst. 2010;15:295–301.CrossRefGoogle Scholar
  159. 159.
    Kuitwaard K, van Doorn PA, Vermeulen M, et al. Serum IgG levels in IV immunoglobulin treated chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry. 2013;84:859–61.PubMedCrossRefGoogle Scholar
  160. 160.
    Berger M, Allen JA. Optimizing IgG therapy in chronic autoimmune neuropathies: a hypothesis driven approach. Muscle Nerve. 2015;51:315–26.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Nobile-Orazio E, Cocito D, Jann S, et al. Intravenous immunoglobulin versus intravenous methylprednisolone for chronic inflammatory demyelinating polyradiculoneuropathy: a randomised controlled trial. Lancet Neurol. 2012;11:493–502.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Muley SA, Parry GJ. Multifocal motor neuropathy. J Clin Neurosci. 2012;19:1201–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Vlam L, van der Pol WL, Cats EA, et al. Multifocal motor neuropathy: diagnosis, pathogenesis and treatment strategies. Nat Rev Neurol. 2012;8:48–58.CrossRefGoogle Scholar
  164. 164.
    Carpo M, Cappellari A, Mora G, et al. Deterioration of multifocal motor neuropathy after plasma exchange. Neurology. 1998;50:1480–2.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Donaghy M, Mills KR, Boniface SJ, et al. Pure motor demyelinating neuropathy: deterioration after steroid treatment and improvement with intravenous immunoglobulin. J Neurol Neurosurg Psychiatry. 1994;57:778–83.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Hahn AF, Beydoun SR, Lawson V, et al. A controlled trial of intravenous immunoglobulin in multifocal motor neuropathy. J Peripher Nerv Syst. 2013;18:321–30.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Nobile-Orazio E, Cappellari A, Meucci N, et al. Multifocal motor neuropathy: clinical and immunological features and response to IVIg in relation to the presence and degree of motor conduction block. J Neurol Neurosurg Psychiatry. 2002;72:761–6.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Alabdali M, Barnett C, Katzberg H, et al. Intravenous immunoglobulin as treatment for myasthenia gravis: current evidence and outcomes. Expert Rev Clin Immunol. 2014;10:1659–65.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Higuchi O, Hamuro J, Motomura M, et al. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69:418–22.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Zhang B, Tzartos JS, Belimezi M, et al. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol. 2012;69:445–51.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Eienbroker C, Seitz F, Spengler A, et al. Intravenous immunoglobulin maintenance treatment in myasthenia gravis: a randomized, controlled trial sample size simulation. Muscle Nerve. 2014;50:999–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Liew WK, Powell CA, Sloan SR, et al. Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis. JAMA Neurol. 2014;71:575–80.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Hellmann MA, Mosberg-Galili R, Lotan I, et al. Maintenance IVIg therapy in myasthenia gravis does not affect disease activity. J Neurol Sci. 2014;338:39–42.PubMedCrossRefGoogle Scholar
  174. 174.
    Chee SN, Murrell DF. The use of intravenous immunoglobulin in autoimmune bullous diseases. Immunol Allergy Clin North Am. 2012;32:323–30, viii.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Gurcan HM, Jeph S, Ahmed AR. Intravenous immunoglobulin therapy in autoimmune mucocutaneous blistering diseases: a review of the evidence for its efficacy and safety. Am J Clin Dermatol. 2010;11:315–26.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Sami N, Bhol KC, Ahmed RA. Influence of intravenous immunoglobulin therapy on autoantibody titers to desmoglein 3 and desmoglein 1 in pemphigus vulgaris. Eur J Dermatol. 2003;13:377–81.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Vo AA, Lukovsky M, Toyoda M, et al. Rituximab and intravenous immune globulin for desensitization during renal transplantation. N Engl J Med. 2008;359:242–51.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Burton SA, Amir N, Asbury A, et al. Treatment of antibody-mediated rejection in renal transplant patients: a clinical practice survey. Clin Transpl. 2015;29:118–23.CrossRefGoogle Scholar
  179. 179.
    Farmer DG, Kattan OM, Wozniak LJ, et al. Incidence, timing, and significance of early hypogammaglobulinemia after intestinal transplantation. Transplantation. 2013;95:1154–9.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Mawhorter S, Yamani MH. Hypogammaglobulinemia and infection risk in solid organ transplant recipients. Curr Opin Organ Transplant. 2008;13:581–5.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Cavill D, Waterman SA, Gordon TP. Antiidiotypic antibodies neutralize autoantibodies that inhibit cholinergic neurotransmission. Arthritis Rheum. 2003;48:3597–602.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Sultan Y, Rossi F, Kazatchkine MD. Recovery from anti-VIII:C (antihemophilic factor) autoimmune disease is dependent on generation of antiidiotypes against anti-VIII:C autoantibodies. Proc Natl Acad Sci U S A. 1987;84:828–31.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Abe Y, Horiuchi A, Miyake M, et al. Anti-cytokine nature of natural human immunoglobulin: one possible mechanism of the clinical effect of intravenous immunoglobulin therapy. Immunol Rev. 1994;139:5–19.CrossRefGoogle Scholar
  184. 184.
    Basta M, Van Goor F, Luccioli S, et al. F(ab)′2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med. 2003;9:431–8.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Tackenberg B, Jelcic I, Baerenwaldt A, et al. Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci U S A. 2009;106:4788–92.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Tjon AS, van Gent R, Jaadar H, et al. Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production. J Immunol. 2014;192:5625–34.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Yu Z, Lennon VA. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N Engl J Med. 1999;340:227–8.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–66.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Bayry J, Lacroix-Desmazes S, Carbonneil C, et al. Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood. 2003;101:758–65.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Trinath J, Hegde P, Sharma M, et al. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells. Blood. 2013;122:1419–27.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Mausberg AK, Dorok M, Stettner M, et al. Recovery of the T-cell repertoire in CIDP by IV immunoglobulins. Neurology. 2013;80:296–303.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Lunemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology—mode of action and clinical efficacy. Nat Rev Neurol. 2015;11:80–9.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Nimmerjahn F, Gordan S, Lux A. FcgammaR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends Immunol. 2015;36:325–36.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol. 2008;26:513–33.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Tjon AS, Tha-In T, Metselaar HJ, et al. Patients treated with high-dose intravenous immunoglobulin show selective activation of regulatory T cells. Clin Exp Immunol. 2013;173:259–67.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Ballow M. Safety of IGIV therapy and infusion-related adverse events. Immunol Res. 2007;38:122–32.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Bonilla FA. Intravenous immunoglobulin: adverse reactions and management. J Allergy Clin Immunol. 2008a;122:1238–9.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Brennan VM, Salome-Bentley NJ, Chapel HM. Prospective audit of adverse reactions occurring in 459 primary antibody-deficient patients receiving intravenous immunoglobulin. Clin Exp Immunol. 2003;133:247–51.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Horn J, Thon V, Bartonkova D, et al. Anti-IgA antibodies in common variable immunodeficiencies (CVID): diagnostic workup and therapeutic strategy. Clin Immunol. 2007;122:156–62.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Rachid R, Bonilla FA. The role of anti-IgA antibodies in causing adverse reactions to gamma globulin infusion in immunodeficient patients: a comprehensive review of the literature. J Allergy Clin Immunol. 2012;129:628–34.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Sandler SG, Eder AF, Goldman M, et al. The entity of immunoglobulin A-related anaphylactic transfusion reactions is not evidence based. Transfusion. 2015;55:199–204.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Sundin U, Nava S, Hammarstrom L. Induction of unresponsiveness against IgA in IgA-deficient patients on subcutaneous immunoglobulin infusion therapy. Clin Exp Immunol. 1998;112:341–6.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Sekul EA, Cupler EJ, Dalakas MC. Aseptic meningitis associated with high-dose intravenous immunoglobulin therapy: frequency and risk factors. Ann Intern Med. 1994;121:259–62.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Daw Z, Padmore R, Neurath D, et al. Hemolytic transfusion reactions after administration of intravenous immune (gamma) globulin: a case series analysis. Transfusion. 2008;48:1598–601.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Kahwaji J, Barker E, Pepkowitz S, et al. Acute hemolysis after high-dose intravenous immunoglobulin therapy in highly HLA sensitized patients. Clin J Am Soc Nephrol. 2009;4:1993–7.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Desborough MJ, Miller J, Thorpe SJ, et al. Intravenous immunoglobulin-induced haemolysis: a case report and review of the literature. Transfus Med. 2014;24:219–26.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Dhainaut F, Guillaumat PO, Dib H, et al. In vitro and in vivo properties differ among liquid intravenous immunoglobulin preparations. Vox Sang. 2013;104:115–26.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Siani B, Willimann K, Wymann S, et al. Isoagglutinin reduction in human immunoglobulin products by donor screening. Biol Ther. 2014;4:15–26.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Berger M. Adverse effects of IgG therapy. J Allergy Clin Immunol Pract. 2013;1:558–66.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Funk MB, Gross N, Gross S, et al. Thromboembolic events associated with immunoglobulin treatment. Vox Sang. 2013;105:54–64.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Dickenmann M, Oettl T, Mihatsch MJ. Osmotic nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes. Am J Kidney Dis. 2008;51:491–503.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Gaines R, Varricchio F, Kapit R, et al. Renal insufficiency and failure associated with immune globulin intravenous therapy – United States, 1985–1998. MMWR Morb Mortal Wkly Rep. 1999;48:518–21.Google Scholar
  213. 213.
    Chapman SA, Gilkerson KL, Davin TD, et al. Acute renal failure and intravenous immune globulin: occurs with sucrose-stabilized, but not with D-sorbitol-stabilized formulation. Ann Pharmacother. 2004;38:2059–67.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Winward DB, Brophy MT. Acute renal failure after administration of intravenous immunoglobulin: review of the literature and case report. Pharmacotherapy. 1995;15:765–72.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Welles CC, Tambra S, Lafayette RA. Hemoglobinuria and acute kidney injury requiring hemodialysis following intravenous immunoglobulin infusion. Am J Kidney Dis. 2010;55:148–51.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Yap PL. The viral safety of intravenous immune globulin. Clin Exp Immunol. 1996;104(Suppl 1):35–42.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Dichtelmuller HO, Biesert L, Fabbrizzi F, et al. Contribution to safety of immunoglobulin and albumin from virus partitioning and inactivation by cold ethanol fractionation: a data collection from Plasma Protein Therapeutics Association member companies. Transfusion. 2011;51:1412–30.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Cai K, Groner A, Dichtelmuller HO, et al. Prion removal capacity of plasma protein manufacturing processes: a data collection from PPTA member companies. Transfusion. 2013;53:1894–905.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Dichtelmuller HO, Biesert L, Fabbrizzi F, et al. Robustness of solvent/detergent treatment of plasma derivatives: a data collection from Plasma Protein Therapeutics Association member companies. Transfusion. 2009;49:1931–43.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Soluk L, Price H, Sinclair C, et al. Pathogen safety of intravenous Rh immunoglobulin liquid and other immune globulin products: enhanced nanofiltration and manufacturing process overview. Am J Ther. 2008;15:435–43.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Stucki M, Boschetti N, Schaefer W, et al. Investigations of prion and virus safety of a new liquid IVIG product. Biologicals. 2008;36:239–47.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2019

Authors and Affiliations

  1. 1.CSL Behring AGBernSwitzerland
  2. 2.CSL Behring LLCKing of PrussiaUSA
  3. 3.Global Clinical Safety and PharmacovigilanceCSL Behring GmbHMarburgGermany
  4. 4.Departement für Chemie und BiochemieUniversität BernBernSwitzerland

Personalised recommendations