Skip to main content

Refractive Laser Surgery

  • Chapter
  • First Online:
Corneal Topography

Abstract

All corneal refractive procedures correct myopia by flattening the central cornea and correct hyperopia by steepening it. In procedures removing tissue from the superficial or anterior cornea (e.g. keratectomy and excimer or femtosecond laser procedures), topography can underestimate the change in corneal power because the algorithms assume a normal corneal thickness when calculating the total corneal power.

Preoperative topography is valuable in screening for corneal disease, planning treatments and guiding tailored laser techniques. The difference between the immediate postoperative map and the preoperative map shows the treatment that has been achieved and any problems with it, such as decentration of the treatment zone.

The difference between a later postoperative map and the immediate map shows changes that have resulted from the healing response (e.g. aggressive healing post-PRK causing regression), epithelial ingrowth beneath a LASIK flap or progressive ectasia if too little tissue has been left in the corneal bed.

Laser thermokeratoplasty corrects low degrees of hyperopia by inducing thermal contraction of collagen fibres in a ring of spots around the midperiphery of the cornea, causing central corneal steepening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

* References Particularly Worth Reading

  1. Maguire LJ. Corneal topography of patients with excellent Snellen visual acuity after epikeratophakia for aphakia. Am J Ophthalmol. 1990;109:162–7.

    Article  CAS  PubMed  Google Scholar 

  2. *Mandell RB. Corneal power correction factor for photorefractive keratectomy. J Cataract Refract Surg. 1994;10:125–8.

    Google Scholar 

  3. Thompson KP. Will the excimer laser resolve the unsolved problems with refractive surgery? [editorial]. Refract Corneal Surg. 1990;6:315–7.

    CAS  PubMed  Google Scholar 

  4. Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol. 1983;96:710–5.

    Article  CAS  PubMed  Google Scholar 

  5. Marshall J, Trokel S, Rothery S, Krueger RR. Photoablative reprofiling of the cornea using an excimer laser: photorefractive keratectomy. Lasers Ophthalmol. 1986;1:21–48.

    Google Scholar 

  6. Marshall J, Trokel S, Rothery S, Schubert H. An ultrastructural study of corneal incisions induced by excimer laser at 193nm. Ophthalmology. 1985;92:749–58.

    Article  CAS  PubMed  Google Scholar 

  7. Puliafito CA, Steinert RF, Deutsch TF, Hillenkamp F, Dehm EJ, Adler CM. Excimer laser ablation of the cornea and lens. Ophthalmology. 1985;92:741–8.

    Article  CAS  PubMed  Google Scholar 

  8. Marshall J, Trokel S, Rothery S, Krueger RR. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser. Br J Ophthalmol. 1986;70:482–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aron Rosa DS, Boerner CF, Gross M, Timsit J-C, Delacour M, Bath PE. Wound healing following excimer laser radial keratotomy. J Cataract Refract Surg. 1988;14:173–9.

    Article  Google Scholar 

  10. Binder PS. What we have learned about corneal wound healing from refractive surgery. Refract Corneal Surg. 1989;5:98–120.

    CAS  PubMed  Google Scholar 

  11. Corbett MC, Marshall J. Corneal haze after excimer laser PRK: a review of aetiological mechanisms and treatment options. Lasers Light Ophthalmol. 1996;7:173–96.

    Google Scholar 

  12. Corbett MC, Prydal JI, Verma S, Oliver KM, Pande M, Marshall J. An in vivo investigation of the structures responsible for corneal haze after PRK, and their effect on visual function. Ophthalmology. 1996;103:1366–80.

    Article  CAS  PubMed  Google Scholar 

  13. Durrie DS, Lesher MP, Cavanaugh TB. Classification of variable clinical response after myopic photorefractive keratectomy. J Refract Surg. 1995;11:341–7.

    CAS  PubMed  Google Scholar 

  14. Niles C, Culp B, Teal P. Excimer laser photorefractive keratectomy using an erodible mask to treat myopic astigmatism. J Cataract Refract Surg. 1996;22:436–40.

    Article  CAS  PubMed  Google Scholar 

  15. Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg. 1988;14:46–52.

    Article  CAS  PubMed  Google Scholar 

  16. *Dierick HG, Van Mellaert CE, Missotten L. Topography of rabbit corneas after photorefractive keratectomy for hyperopia using airborne rotational masks. J Refract Surg. 1996;12:774–82.

    Google Scholar 

  17. Danjoux J-P, Kalski RS, Cohen P, Lawless MA, Rogers C. Excimer laser photorefractive keratectomy for hyperopia. J Refract Surg. 1997;13:349–55.

    CAS  PubMed  Google Scholar 

  18. *Dausch DGJ, Klein RJ, Schröder E, Niemczyk S. Photorefractive keratectomy for hyperopic and mixed astigmatism. J Refract Surg. 1996;12:684–692.

    Google Scholar 

  19. Alpins NA. New method of targeting vectors to treat astigmatism. J Cataract Refract Surg. 1997;23:65–75.

    Article  CAS  PubMed  Google Scholar 

  20. Olsen T, Dam-Johansen M, Beke T, Hjortdal JO. Evaluating surgically induced astigmatism by Fourier analysis of corneal topography data. J Cataract Refract Surg. 1996;22:318–23.

    Article  CAS  PubMed  Google Scholar 

  21. Liang F-Q, Geasey SD, del Cerro M, Aquavella JV. A new procedure for evaluating smoothness of corneal surface following 193nm excimer laser ablation. Refract Corneal Surg. 1992;8:459–65.

    CAS  PubMed  Google Scholar 

  22. Fleming JF. Should refractive surgeons worry about corneal asphericity? Refract Corneal Surg. 1990;6:455–7.

    CAS  PubMed  Google Scholar 

  23. Oliver KM, Hemenger RP, Corbett MC, O’Brart DPS, Verma S, Marshall J, Tomlinson A. Corneal optical aberrations induced by photorefractive keratectomy. J Refract Surg. 1997;13:246–54.

    CAS  PubMed  Google Scholar 

  24. *Johnson DA, Haight DH, Kelly SE, Muller J, Swinger CA, Tostanoski J, Odrich MG. Reproducibility of videokeratographic digital subtraction maps after excimer laser photorefractive keratectomy. Ophthalmology. 1996;103:1392–8.

    Article  CAS  PubMed  Google Scholar 

  25. Jackson WB, Mintsioulis G, Agapitos PJ, Casson EJ. Excimer laser photorefractive keratectomy for low hyperopia: safety and efficacy. J Cataract Refract Surg. 1997;23:480–7.

    Article  CAS  PubMed  Google Scholar 

  26. O'Brart DPS, Corbett MC, Lohmann CP, Kerr Muir MG, Marshall J. The effects of ablation diameter on the outcome of excimer laser photorefractrive keratectomy (PRK): a prospective, randomised, double blind study. Arch Ophthalmol. 1995;113:438–43.

    Article  CAS  PubMed  Google Scholar 

  27. Corbett MC, Verma S, O'Brart DPS, Oliver KM, Heacock G, Marshall J. The effect of ablation profile on wound healing and visual performance one year after excimer laser PRK. Br J Ophthalmol. 1996;80:224–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Corbett MC, O'Brart DPS, Stultiens BAT, Jongsma FHM, Marshall J. Corneal topography using a new moiré image-based system. Eur J Implant Ref Surg. 1995;7:353–70.

    Article  Google Scholar 

  29. Corbett MC, Oliver KM, Verma S, Pande M, Patel S, Marshall J. The contribution of the corneal epithelium to the refractive changes occurring after excimer laser PRK. Invest Ophthalmol Vis Sci (in press).

    Google Scholar 

  30. Uozato H, Guyton DL. Centring corneal surgical procedures. Am J Ophthalmol. 1987;103:264–75.

    CAS  PubMed  Google Scholar 

  31. Guyton DL. More on optical zone centration [letter]. Ophthalmology. 1994;101:793.

    Article  CAS  PubMed  Google Scholar 

  32. Terrell J, Bechara SJ, Nesburn A, Waring GO, Macy J, Maloney RK. The effect of globe fixation on ablation zone centration in photorefractive keratectomy. Am J Ophthalmol. 1995;119:612–9.

    Article  CAS  PubMed  Google Scholar 

  33. Cantera E, Cantera I, Olivieri L. Corneal topographic analysis of photorefractive keratectomy in 175 myopic eyes. Refract Corneal Surg. 1993;9(Suppl):S19–22.

    CAS  PubMed  Google Scholar 

  34. Schwartz-Goldstein BH, Hersh PS, The Summit Photorefractive Keratectomy Topography Study Group. Corneal topography of phase III excimer laser photorefractive keratectomy: optical zone centration analysis. Ophthalmology. 1995;102:951–62.

    Article  CAS  PubMed  Google Scholar 

  35. *Deitz MR, Piebenga LW, Matta CS, Tauber J, Anello RD, DeLuca MC. Ablation zone centration after photorefractive keratectomy and its effects on visual outcome. J Cataract Refract Surg. 1996;22:696–701.

    Article  CAS  Google Scholar 

  36. Spadea L, Sabetti L, Balestrazzi E. Effect of centring excimer laser PRK on refractive results: a corneal topography study. Refract Corneal Surg. 1993;9(Suppl):S22–5.

    CAS  PubMed  Google Scholar 

  37. Azar DT, Yeh PC. Corneal topographic decentration in photorefractive keratectomy: treatment displacement vs intraoperative drift. Am J Ophthalmol. 1997;124:312–20.

    Article  CAS  PubMed  Google Scholar 

  38. Klyce SD, Smolek MK. Corneal topography of excimer laser photorefractive keratectomy. J Cataract Refract Surg. 1993;19(Suppl):122–30.

    Article  PubMed  Google Scholar 

  39. Lin DTC, Sutton HF, Berman M. Corneal topography following excimer photorefractive keratectomy for myopia. J Cataract Refract Surg. 1993;19(Suppl):149–54.

    Article  PubMed  Google Scholar 

  40. Amano S, Tanaka S, Kimiya S. Topographical evaluation of centration of excimer laser myopic photorefractive keratectomy. J Cataract Refract Surg. 1994;20:616–9.

    Article  CAS  PubMed  Google Scholar 

  41. Maloney RK. Corneal topography and optical zone location in photorefractive keratectomy. Refract Corneal Surg. 1990;6:363–71.

    CAS  PubMed  Google Scholar 

  42. *Cavanaugh TB, Durrie DS, Riedel SM, Hunkeler JD, Lesher MP. Topographical analysis of the centration of excimer laser photorefractive keratectomy. J Cataract Refract Surg. 1993;19(Suppl):136–43.

    Article  Google Scholar 

  43. Sun R, Gimbel HV, DeBroff BM. Recommendation for correctly analyzing photorefractive keratectomy centration data. J Cataract Refract Surg. 1995;21:4–5.

    Article  CAS  PubMed  Google Scholar 

  44. *Lin DTC. Corneal topographic analysis after excimer laser photorefractive keratectomy. Ophthalmology. 1994;101:1423–39.

    Article  CAS  PubMed  Google Scholar 

  45. *Mulhern MG, Foley-Nolan A, O’Keefe M, Condon PI. Topographical analysis of ablation centration after excimer laser photorefractive keratectomy and laser in situ keratomileusis for high myopia. J Cataract Refract Surg. 1997;23:488–94.

    Article  CAS  Google Scholar 

  46. Webber SK, McGhee CNJ, Bryce IG. Decentration of photorefractive keratectomy ablation zones after excimer laser surgery for myopia. J Cataract Refract Surg. 1996;22:299–303.

    Article  CAS  PubMed  Google Scholar 

  47. Fay AM, Trokel SL, Myers JA. Pupil diameter and the principal ray. J Cataract Refract Surg. 1992;18:348–51.

    Article  CAS  PubMed  Google Scholar 

  48. Cantera E, Cantera I, Olivieri L. Qualitative evaluation of photorefractive keratectomy with computer assisted corneal topography. J Refract Corneal Surg. 1994;10(Suppl):296–8.

    Google Scholar 

  49. Grimm B, Waring GO, Ibrahim O. Regional variation in corneal topography and wound healing following photorefractive keratectomy. J Refract Surg. 1995;11:348–57.

    CAS  PubMed  Google Scholar 

  50. *Hersh PS, Schwartz-Goldstein BH, The Summit Photorefractive Keratectomy Topography Study Group. Corneal topography of phase III excimer laser photorefractive keratectomy: characterisation and clinical effects. Ophthalmology. 1995;102:963–78.

    Google Scholar 

  51. Hersh PS, Shah SI, Summit PRK Topography Study Group. Corneal topography of excimer laser photorefractive keratectomy using a 6-mm beam diameter. Ophthalmology. 1997;104:1333–42.

    Article  CAS  PubMed  Google Scholar 

  52. Hafezi F, Jankov M, Mrochen M, et al. Customized ablation algorithm for the treatment of steep central islands after refractive laser surgery. J Cataract Refract Surg. 2006;32:717–21.

    Article  PubMed  Google Scholar 

  53. *Levin S, Carson CA, Garrett SK, Taylor HR. Prevalence of central islands after excimer laser refractive surgery. J Cataract Refract Surg. 1995;21:21–6.

    Article  CAS  Google Scholar 

  54. Krueger RR, Saedy NF, McDonnell PJ. Clinical analysis of steep central islands after excimer laser photorefractive keratectomy. Arch Ophthalmol. 1996;114:377–81.

    Article  CAS  PubMed  Google Scholar 

  55. McGhee CNJ, Bryce IG. Natural history of central topographic islands following excimer laser photorefractive keratectomy. J Cataract Refract Surg. 1996;22:1151–8.

    Article  CAS  PubMed  Google Scholar 

  56. *Krueger RR. Steep central islands: have we finally figured then out? J Refract Surg. 1997;13:215–8.

    Google Scholar 

  57. Shimmick JK, Telfair WB, Munnerlyn CR, Bartlett JD, Trokel SL. Corneal ablation profilometry and steep central islands. J Refract Surg. 1997;13:235–45.

    CAS  PubMed  Google Scholar 

  58. Noack J, Tönnies R, Hohla K, Birngruber R, Vogel A. Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy. Ophthalmology. 1997;104:823–30.

    Article  CAS  PubMed  Google Scholar 

  59. Gottsch JD, Rencs EV, Cambier JL, Hall D, Azar DT, Stark WJ. Excimer laser calibration system. J Refract Surg. 1996;12:401–11.

    CAS  PubMed  Google Scholar 

  60. Castillo A, Romero F, Martin-Valverde JA, Diaz-Valle D, Toledano N, Sayagues O. Management and treatment of steep central islands after excimer laser photorefractive keratectomy. J Refract Surg. 1996;12:715–20.

    CAS  PubMed  Google Scholar 

  61. Lombardo M, Lombardo G, Ducoli P, Serrao S. Long-term changes of the anterior corneal topography after photorefractive keratectomy for myopia and myopic astigmatism. Invest Ophthalmol Vis Sci. 2011;52(9):6994–7000.

    Article  PubMed  Google Scholar 

  62. Helena MC, Robin JB, Wilson SE. Analysis of corneal topography after automated lamellar keratoplasty. Ophthalmology. 1997;104:950–5.

    Article  CAS  PubMed  Google Scholar 

  63. Pallikaris IG, Papatzanaki M, Siganos D, Tsilimbaris MK. A corneal flap technique for laser in situ keratomileusis: human studies. Arch Ophthalmol. 1991;145:1699–702.

    Article  Google Scholar 

  64. *Condon PI, Mulhern M, Fulcher T, Foley-Nolan A, O’Keefe M. Laser intrastromal keratomileusis for high myopia and myopic astigmatism. Br J Ophthalmol. 1997;81:199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salah T, Waring GO, El Maghraby A, Moadel K, Grimm SB. Excimer laser in situ keratomileusis under a corneal flap for myopia of 2 to 20 diopters. Am J Ophthalmol. 1996;121:143–55.

    Article  CAS  PubMed  Google Scholar 

  66. Pérez-Santonja JJ, Bellot J, Claramonte P, Ismail MM, Alió JL. Laser in situ keratomileusis to correct high myopia. J Cataract Refract Surg. 1997;23:372–85.

    Article  PubMed  Google Scholar 

  67. Knorz MC, Liermann A, Seiberth V, Steiner H, Wiesinger B. Laser in situ keratomileusis to correct myopia of −6.00D to −29.00 diopters. J Refract Surg. 1996;12:575–84.

    CAS  PubMed  Google Scholar 

  68. Parel J-M, Ing ETS-G, Ren Q, Simon G. Non-contact laser photothermal keratoplasty I: biophysical principles and laser beam delivery system. J Refract Corneal Surg. 1994;10:511–8.

    CAS  PubMed  Google Scholar 

  69. Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol. 2011;95:335–9.

    Article  PubMed  Google Scholar 

  70. Reinstein DZ, Archer T, Gobbe M. Small incision lenticule extraction (SMILE) history, fundamentals of a new refractive surgery technique and clinical outcomes. Eye Vision. 2014;1:3.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Reinstein DZ, Archer TJ, Randleman JB. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK and small incision lenticule extraction (SMILE). J Refract Surg. 2013;29:454–60.

    Article  PubMed  Google Scholar 

  72. Sinha Roy A, Dupps WJ Jr, Roberts CJ. Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: finite-element analysis. J Cataract Refract Surg. 2014;40:971–80.

    Article  PubMed  Google Scholar 

  73. Yang E, Roberts CJ, Mehta JS. A review of corneal biomechanics after LASIK and SMILE and the current methods of corneal biomechanical analysis. J Clin Exp Ophthalmol. 2015;6:6.. https://doi.org/10.4172/2155-9570.1000507

    Article  Google Scholar 

  74. Dou R, Wang Y, Xu L, Wu D, Wu W, Li X. Comparison of corneal biomechanical characteristics after surface ablation refractive surgery and novel lamellar refractive surgery. Cornea. 2015 Nov;34(11):1441–6.

    Article  PubMed  Google Scholar 

  75. Ganesh S, Gupta R. Comparison of visual and refractive outcomes following femtosecond laser assisted LASIK with SMILE in patients with myopia or myopic astigmatism. J Refract Surg. 2014.; 2014;30(9):590–6.

    Article  PubMed  Google Scholar 

  76. Lin F, Xu Y, Yang Y. Comparison of the visual results after SMILE and femtosecond laser-assisted LASIK for myopia. Abstr J Refract Surg. 2014;30(4):248–54.

    Article  Google Scholar 

  77. Shah R, Shah S, Sengupta S, et al. Results of small incision lenticule extraction: all-in-one femtosecond laser refractive surgery. J Cataract Refract Surg. 2011;37(1):127–37.

    Article  PubMed  Google Scholar 

  78. Hjortdal JØ, Vestergaard AH, Ivarsen A, et al. Predictors for the outcome of small-incision lenticule extraction for myopia. J Refract Surg. 2012;28(12):865–71.

    Article  PubMed  Google Scholar 

  79. Kamiya K, Shimizu K, Igarashi A, et al. Visual and refractive outcomes of femtosecond lenticule extraction and small-incision lenticule extraction for myopia. Am J Ophthalmol. 2014;157(1):128–134.e2.

    Article  PubMed  Google Scholar 

  80. Kamiya K, Shimizu K, Igarashi A, Kobashi H, Sato N, Ishii R. Intraindividual comparison of changes in corneal biomechanical parameters after femtosecond lenticule extraction and small-incision lenticule extraction. JCRS. 2014;40(6):963–70.

    Google Scholar 

  81. Ivarsen A, Asp S, Hjortdal J. Safety and complications of more than 1500 small-incision lenticule extraction procedures. Ophthalmology. 2014;121(4):822–8.

    Article  PubMed  Google Scholar 

  82. Sachdev G, Sachdev MS, Sachdev R, Gupta H. Unilateral corneal ectasia following small-incision lenticule extraction. J Cataract Refract Surg. 2015;41:2014–8.

    Article  PubMed  Google Scholar 

  83. Mastropasqua L. Bilateral ectasia after femtosecond laser-assisted small-incision lenticule extraction. J Cataract Refract Surg. 2015;41:1338–9.

    Article  PubMed  Google Scholar 

  84. Wang Y, Cui C, Li Z, et al. Corneal ectasia 6.5 months after small-incision lenticule extraction. J Cataract Refract Surg. 2015;41:1100–6.

    Article  PubMed  Google Scholar 

  85. El-Naggar MT. Bilateral ectasia after femtosecond laser-assisted small-incision lenticule extraction. J Cataract Refract Surg. 2015;41:884–8.

    Article  PubMed  Google Scholar 

  86. Mattila JS, Holopainen JM. Bilateral ectasia after femtosecond laser-assisted small incision lenticule extraction (SMILE). J Refract Surg. 2016;32:497–500.

    Article  PubMed  Google Scholar 

  87. *Simon G, Ren Q, Parel J-M, Ing ETS-G. Non-contact laser photothermal keratoplasty II: refractive effects and treatment parameters in cadaver eyes. J Refract Corneal Surg. 1994;10:519–28.

    Google Scholar 

  88. Ren Q, Simon G, Parel J-M. Non-contact laser photothermal keratoplasty III: histological study in animal eyes. J Refract Corneal Surg. 1994;10:529–39.

    CAS  PubMed  Google Scholar 

  89. *Kohnen T, Husain SE, Koch DD. Corneal topographic changes after noncontact holmium:YAG laser thermal keratoplasty to correct hyperopia. J Cataract Refract Surg. 1996;22:427–35.

    Article  CAS  Google Scholar 

  90. Koch DD, Kohnen T, McDonnell PJ, Menefee RF, Berry MJ. Hyperopia correction by noncontact holmium:YAG laser thermokeratoplasty. Ophthalmology. 1996;103:1525–36.

    Article  CAS  PubMed  Google Scholar 

  91. Goggin M, Lavery F. Holmium laser thermokeratoplasty for the reversal of hyperopia after myopic photorefractive keratectomy. Br J Ophthalmol. 1997;81:541–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corbett, M., Maycock, N., Rosen, E., O’Brart, D. (2019). Refractive Laser Surgery. In: Corneal Topography. Springer, Cham. https://doi.org/10.1007/978-3-030-10696-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10696-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10694-2

  • Online ISBN: 978-3-030-10696-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics