Refractive Corneal Surgery

  • Melanie Corbett
  • Nicholas Maycock
  • Emanuel Rosen
  • David O’Brart


In patients undergoing corneal surgery, topography is useful in preoperative planning, intraoperative modification and postoperative monitoring and problem-solving. Myopia is addressed by corneal flattening, hyperopia by corneal steepening and regular astigmatism by differentially addressing perpendicular meridian. These changes may be achieved by reshaping the anterior corneal surface or by altering the mechanical forces across the whole thickness of the cornea.

Preoperatively, topography is valuable in confirming stability of corneal shape over time and excluding subclinical disease, including ectasia. It also quantifies corneal astigmatism prior to cataract surgery. Topographic maps measure a preoperative baseline useful in communicating with patients and healthcare staff and as a medicolegal record.

Intraoperatively the corneal shape is usually assessed qualitatively by keratoscopy using handheld devices with circular rings or illuminated rings mounted in the operating microscope. This can guide the modification of incisions and the tension or placement of sutures.

Postoperatively difference maps can demonstrate the change occurring from preoperatively to postoperatively or during the postoperative period. It can be used to assess the effect of corneal shape on visual function and investigate other postoperative problems.

Radial keratotomy addresses myopia, by deep radial incisions causing bowing of the midperipheral cornea. Higher corrections can result in an oblate cornea with marked central flattening which may exhibit diurnal variation and long-term progression. The topography often shows a polygonal pattern, giving rise to multifocality which can either reduce best-corrected acuity or improve depth of focus.

In astigmatic keratotomy, deep circumferential incisions cause flattening of the affected meridian and steepening of the perpendicular meridian through coupling.


Corneal topography Refractive surgery Myopia Hyperopia Astigmatism Screening Corneal stability Corneal ectasia Corneal incisions Corneal flattening Corneal steepening Subclinical disease Baseline measurements Preoperative planning Difference maps Change maps Postoperative problems solving Radial keratotomy Astigmatic keratotomy Coupling Visual function Diurnal variation Progression 


*References Particularly Worth Reading

  1. 1.
    Waring GO. Development and evaluation of refractive surgical procedures. Part I. Five stages in the continuum of development. J Refract Surg. 1987;3:141–57.CrossRefGoogle Scholar
  2. 2.
    Javitt JC. Clear lens extraction for high myopia: is this an idea whose time has come? [editorial]. Arch Ophthalmol. 1994;112:321–3.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Rosen ES. Considering corneal and lenticular techniques of refractive surgery [editorial]. J Cat Refract Surg. 1997;23:689–91.CrossRefGoogle Scholar
  4. 4.
    Maguire LJ. Corneal topography of patients with excellent Snellen visual acuity after epikeratophakia for aphakia. Am J Ophthalmol. 1990;109:162–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Li SM, Kang MT, Zhou Y, et al. Wavefront excimer laser refractive surgery for adults with refractive errors. Cochrane Database Syst Rev. 2017;6:CD012687.Google Scholar
  6. 6.
    Moreira H, Campos M, Sawusch MR, et al. Holmium laser thermokeratoplasty. Ophthalmology. 1993;100(5):752–61.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Thornton SP. Clinical evaluation of corneal topography. J Cat Refract Surg. 1993;19(Suppl):198–202.CrossRefGoogle Scholar
  8. 8.
    Young JA, Kornmehl EW. Chapter 16 – Preoperative evaluation for refractive surgery. Posted on medtextfree on November 12, 2010 in Ophthalmology. n.d..Google Scholar
  9. 9.
    Ambrósio R Jr, Klyce SD, Wilson SE. Corneal topographic and pachymetric screening of keratorefractive patients. J Refract Surg. 2003;19:24–9.PubMedPubMedCentralGoogle Scholar
  10. 10.
    *Wilson SE, Klyce SD. Screening for corneal topographic abnormalities before refractive surgery. Ophthalmology. 1994;101:147–52.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Nesburn AB, Bahri S, Salz J, Rabinowitz YS, Maguen E, Hofbauer J, Belin M, Macy JI. Keratoconus detected by videokeratography in candidates for photorefractive keratectomy. J Refract Surg. 1995;11:194–201.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bowman CB, Thompson KP, Stulting RD. Refractive keratotomy in keratoconus suspects. J Refract Surg. 1995;11:202–6.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Doyle SJ, Hynes E, Naroo S, Shah S. PRK in patients with a keratoconic topography picture. The concept of a physiological ‘displaced apex syndrome’. Br J Ophthalmol. 1996;80:25–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Colin J, Cochener B, Bobo C, Malet F, Gallinaro C, Le Floch G. Myopic photorefractive keratectomy in eyes with atypical inferior corneal steepening. J Cataract Refract Surg. 1996;22:1423–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wilson SE, Lin DTC, Klyce SD, Reidy JJ, Insler MS. Topographic changes in contact lens-induced warpage. Ophthalmology. 1990;97:734–44.CrossRefGoogle Scholar
  16. 16.
    Ruiz-Montenegro J, Mafra CH, Wilson SE, Jumper JM, Klyce SD, Mendelson EN. Corneal topographic alterations in normal contact lens wearers. Ophthalmology. 1993;100:128–34.CrossRefGoogle Scholar
  17. 17.
    Corbett MC, O’Brart DPS, Marshall J. Biological and environmental risk factors for regression after photorefractive keratectomy. Ophthalmology. 1996;103:1381–91.CrossRefGoogle Scholar
  18. 18.
    Lebow KA, Grohe R. Differentiating contact lens induced warpage from true keratoconus using corneal topography. Eye Contact Lens. 1999;25:114.Google Scholar
  19. 19.
    Randleman JB, Woodward M, Lynn MJ, et al. Risk assessment of ectasia after corneal refractive surgery. Ophthalmology. 2008;115:37–50.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Santhiago MR, et al. Association between the percent tissue altered and post–laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol. 2014;158(1):87–95.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lui Z, Pflugfelder SC. Corneal surface regularity and the effect of artificial tears in aqueous tear deficiency. Ophthalmology. 1999;106(5):939–43.CrossRefGoogle Scholar
  22. 22.
    Lui Z, Pflugfelder SC. The effects of long-term contact lens wear on corneal thickness, curvature, and surface regularity. Ophthalmology. 2000;107(1):105–11.CrossRefGoogle Scholar
  23. 23.
    Maguire LJ, Klyce SD, Sawelson H, McDonald MB, Kaufman HE. Visual distorsion after myopic keratomileusis. Computer analysis of keratoscope photographs. Ophthalmic Surg. 1987;18:352–6.Google Scholar
  24. 24.
    Rashid ER, Waring GO. Complications of radial and transverse keratotomy. Surv Ophthalmol. 1989;34:74–104.CrossRefGoogle Scholar
  25. 25.
    *Waring GO III, Lynn MJ, McDonnell PJ, the PERK Study Group. Results of the prospective evaluation of radial keratotomy (PERK) study ten years after surgery. Ophthalmology. 1994;112:1298–308.Google Scholar
  26. 26.
    McDonnell PJ, Caroline PJ, Salz J. Irregular astigmatism after radial and astigmatic keratotomy. Am J Ophthalmol. 1989;107:42–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    *Astin CLK, Gartry DS, Steele ADMcG. Contact lens fitting after photorefractive keratectomy. Br J Ophthalmol. 1996;80:597–603.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Siganos DS, Pallikaris IG, Lambropoulos JE, Koufala CJ. Keratometric readings after photorefractive keratectomy are unreliable for calculating IOL power. J Refract Surg. 1996;12:S278–9.Google Scholar
  29. 29.
    Pepose JS, Lim-Bon-Siong R, Mardelli P. Future shock: the long term consequences of refractive surgery. Br J Ophthalmol. 1997;81:428–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lesher MP, Schumer DJ, Hunkeler JD, Durrie DS, McKee FE. Phacoemulsification with intraocular lens implantation after excimer photorefractive keratectomy: a case report. J Cataract Refract Surg. 1994;20(Suppl):265–7.CrossRefGoogle Scholar
  31. 31.
    Hoffer KJ. Calculating intraocular lens power after refractive corneal surgery [editorial]. Arch Ophthalmol. 2002;120:500–1.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Koch DD, Wang L. Calculating IOL power in eyes that have had refractive surgery. J Cataract Refract Surg. 2003;29:2039–42.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Savini G, Hoffer KJ, Zanini M. IOL power calculations after LASIK and PRK. Cataract Refract Surg Today Eur. 2007;4:37–44.Google Scholar
  34. 34.
    Feiz V, Mannis MJ. Intraocular lens calculations after corneal refractive surgery. Curr Opin Ophthalmol. 2004;15:342–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hodge C, McAlinden C, Lawless M, et al. Intraocular lens power calculation following laser refractive surgery. Eye Vision. 2015;2:7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Klyce SD, Smolek MK. Corneal topography of excimer laser photorefractive keratectomy. J Cataract Refract Surg. 1993;19(Suppl):122–30.CrossRefGoogle Scholar
  37. 37.
    Uozato H, Guyton DL. Centering corneal surgical procedures. Am J Ophthalmol. 1987;103:264–75.Google Scholar
  38. 38.
    Guyton DL. More on optical zone centration [letter]. Ophthalmology. 1994;101:793.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fleming JF. Should refractive surgeons worry about corneal asphericity? Refract Corneal Surg. 1990;6:455–7.Google Scholar
  40. 40.
    Eghbali F, Yeung KK, Maloney RK. Topographic determination of corneal asphericity and its lack of effect on the outcome of radial keratotomy. Am J Ophthalmol. 1995;119:275–80.CrossRefGoogle Scholar
  41. 41.
    Seiler T, Reckmann W, Maloney RK. Effective spherical aberration of the cornea as a quantitative descriptor in corneal topography. J Cataract Refract Surg. 1993;19(Suppl):155–65.CrossRefGoogle Scholar
  42. 42.
    Oliver KM, Hemenger RP, Corbett MC, O’Brart DPS, Verma S, Marshall J, Tomlinson A. Corneal optical aberrations induced by photorefractive keratectomy. J Refract Surg. 1997;13:246–54.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Maguire LJ, Zabel RW, Parker P, Lindstrom RL. Topography and raytracing analysis of patients with excellent visual acuity 3 months after excimer laser photorefractive keratectomy for myopia. Refract Corneal Surg. 1991;7:122–8.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Schwartz-Goldstein BH, Hersh PS, The Summit Photorefractive Keratectomy Topography Study Group. Corneal topography of phase III excimer laser photorefractive keratectomy: optical zone centration analysis. Ophthalmology. 1995;102:951–62.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cantera E, Cantera I, Olivieri L. Corneal topographic analysis of photorefractive keratectomy in 175 myopic eyes. Refract Corneal Surg. 1993;9(Suppl):S19–22.PubMedPubMedCentralGoogle Scholar
  46. 46.
    *McDonnell PJ, McClusky DJ, Garbus J. Corneal topography and fluctuating visual acuity after radial keratotomy. Ophthalmology. 1989;96:665–70.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    *Kwitko S, Gritz DC, Garbus JJ, Gauderman WJ, McDonnell PJ. Diurnal variation of corneal topography after radial keratotomy. Arch Ophthalmol. 1992;110:351–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lin DTC. Corneal topographic analysis after excimer laser photorefractive keratectomy. Ophthalmology. 1994;101:1423–39.CrossRefGoogle Scholar
  49. 49.
    Moreno-Barrusio E, Merayo Lloves J, Marcos S, et al. Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing. IOVS. 2001;42:1396–403.Google Scholar
  50. 50.
    Holladay JT, Lumm MJ, Waring GO III, Gemmil M, Keehn GC, Fielding B. The relationship of visual acuity, refractive error; and pupil size after radial keratotomy. Arch Ophthalmol. 1991;109:70–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Applegate RA, Gansel KA. The importance of pupil size in optical quality measurements following radial keratotomy. Refract Corneal Surg. 1990;6:47–54.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Binder PS. Optical problems following refractive surgery. Ophthalmology. 1986;93:739–45.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Balakrishnan V, Lim ASM, Tseng PSF, Hong LC. Decentered ablation zones resulting from photorefractive keratectomy with an erodible mask. Int Ophthalmol. 1993;17:179–84.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    McDonnell JP, Garbus FG. Corneal topographic changes after radial keratotomy. Refract Corneal Surg. 1989;5:379–87.Google Scholar
  55. 55.
    Fyodorov SN, Durnev VA. Surgical correction of complicated myopic astigmatism by means of dissection of the circular ligament of the cornea. Ann Ophthalmol. 1981;13:115.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Simon G, Ren Q. Biomechanical behaviour of the cornea and its response to radial keratotomy. J Refract Corneal Surg. 1994;10:343–56.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Seiler T, Matallana M, Sendler S, Bende T. Does Bowman’s layer determine the biomechanical properties of the cornea? Refract Corneal Surg. 1992;8:139–42.Google Scholar
  58. 58.
    Buzard KA, Ronk JF, Friedlander MH, Tepper DJ, Hoeltzel DA, Choe K-I. Quantitative measurement of wound spreading in radial keratotomy. Refract Corneal Surg. 1992;8:217–23.Google Scholar
  59. 59.
    Jester JV, Petroll WM, Feng W, Essepian J, Cavanagh HD. Radial keratotomy: the wound healing process and measurement of incisional gape in two animal models using in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 1992;33:3255–70.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Garana RMR, Petroll M, Chen WT, Herman IM, Barry P, Andrews P, Cavanagh HD, Jester JV. Radial keratotomy: role of the myofibroblast in corneal wound contraction. Invest Ophthalmol Vis Sci. 1992;33:3271–82.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Petroll WM, New K, Sachdev M, Cavanagh HD, Jester JV. Radial keratotomy: relationship between wound gape and corneal curvature in primate eyes. Invest Ophthalmol Vis Sci. 1992;33:3283–91.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Binder PS. What we have learned about corneal wound healing from refractive surgery. Refract Corneal Surg. 1989;5:98–120.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Melles GR, Binder PS, Anderson JA. Variation in healing throughout the depth of long-term, unsutured, corneal wounds in human autopsy specimens and monkeys. Arch Ophthalmol. 1994;112:100–9.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Thornton S. A computerised nomogram for the performance of radial and arcuate keratotomy. USA: EyeSys Co; 1993.Google Scholar
  65. 65.
    Melles GRJ, Binder PS. Effect of wound location, orientation, direction, and postoperative time on unsutured corneal wound healing morphology in monkeys. Refract Corneal Surg. 1992;8:427–38.PubMedPubMedCentralGoogle Scholar
  66. 66.
    *Bogan S, Maloney R, Drews C, Waring GO III. Computer-assisted videokeratography of corneal topography after radial keratotomy. Arch Ophthalmol. 1991;109:834–41.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Bogan SJ, Waring GO, Ibrahim O, Drews C, Curtis L. Classification of normal corneal topography based on computer-assisted videokeratography. Arch Ophthalmol. 1990;108:945–9.CrossRefGoogle Scholar
  68. 68.
    *McDonnell PJ, Garbus J. Corneal topographic changes after radial keratotomy. Ophthalmology. 1989;96:45–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Maguire LJ, Bourne WM. A multifocal lens effect as a complication of radial keratotomy. J Refract Corneal Surg. 1989;5:394–9.Google Scholar
  70. 70.
    *Moreira H, Fasano AP, Garbus JJ, Lee M, McDonnell PJ. Corneal topographic changes over time after radial keratotomy. Cornea. 1992;11:465–70.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Waring GO III, Lynn M, Gelender H, Laibson P, Lindstrom R, Myers W, the PERK Study Group. Results of the prospective evaluation of radial keratotomy (PERK) study one year after surgery. Ophthalmology. 1985;92:177–98.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    *Buzard KA, Fundingsland BR, Friedlander M. Transient central corneal steepening after radial keratotomy. J Refract Surg. 1996;12:521–5.Google Scholar
  73. 73.
    Buzard KA. Introduction to biomechanics of the cornea [review]. Refract Corneal Surg. 1992;8:126–38.Google Scholar
  74. 74.
    *Swinger CA. Postoperative astigmatism. Surv Ophthalmol. 1987;31:219–48.CrossRefGoogle Scholar
  75. 75.
    Kessel L, Andresen J, Tendal B, et al. Toric intraocular lenses in the correction of astigmatism during cataract surgery: a systematic review and meta-analysis. Ophthalmology. 2016;123(2):275–86.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    *van Rij G, Waring GO III. Changes in corneal curvature induced by sutures and incisions. Am J Ophthalmol. 1984;98:773–83.CrossRefGoogle Scholar
  77. 77.
    *Harto MA, Maldononado MJ, Cisneros AL, Perez-Torregrosa VT, Menezo JL. Comparison of intersecting trapezoidal keratotomy and arcuate transverse keratotomy in the correction of high astigmatism. J Refract Surg. 1996;12:585–94.Google Scholar
  78. 78.
    Calossi A, Verzella F, Penso A. Computer program to calculate vectorial change of refraction induced by refractive surgery. Refract Corneal Surg. 1993;9:276–9.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Vass C, Menapace R. Computerised statistical analysis of corneal topography for the evaluation of changes in corneal shape after surgery. Am J Ophthalmol. 1994;118:177–84.CrossRefGoogle Scholar
  80. 80.
    Olsen T, Dam-Johansen M, Beke T, Hjortdal JO. Evaluating surgically induced astigmatism by Fourier analysis of corneal topography data. J Cataract Refract Surg. 1996;22:318–23.CrossRefGoogle Scholar
  81. 81.
    Alpins NA. New method of targeting vectors to treat astigmatism. J Cataract Refract Surg. 1997;23:65–75.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    *Güell JL, Manero F, Müller A. Transverse keratotomy to correct high corneal astigmatism after cataract surgery. J Cataract Refract Surg. 1996;22:331–6.CrossRefGoogle Scholar
  83. 83.
    Pallikaris IG, Xirafis ME, Naoumidis LP, Siganos DS. Arcuate transverse keratotomy with a mechanical arcutome based on videokeratography. J Refract Surg. 1996;12:S296–9.PubMedPubMedCentralGoogle Scholar
  84. 84.
    *Lundergan MK, Rowsey JJ. Relaxing incisions: corneal topography. Ophthalmology. 1985;92:1226–36.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    *Duffy RJ Jain VN, Tchah H, Hofmann RF, Lindstrom RL. Paired arcuate keratotomy: a surgical approach to mixed myopic astigmatism. Arch Ophthalmol. 1988;106:1130–5.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    McCluskey DJ, Villasenor R, McDonnell PJ. Prospective topographic analysis in peripheral arcuate keratotomy for astigmatism. Ophthalmic Surg. 1990;21:464–71.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Troutman RC, Swinger CA. Relaxing incision for control of postoperative astigmatism following keratoplasty. Ophthalmic Surg. 1980;90:131–6.Google Scholar
  88. 88.
    Ring CP, Hadden OB, Morris AT. Transverse keratotomy combined with spherical photorefractive keratectomy for compound myopic astigmatism. J Refract Corneal Surg. 1994;10(Suppl):217–21.Google Scholar
  89. 89.
    Hall GW, Campion M, Sorenson CM, Monthofer S. Reduction of corneal astigmatism at cataract surgery. J Cataract Refract Surg. 1991;17:407–14.CrossRefGoogle Scholar
  90. 90.
    *Schanzlin DJ, Asbell PA, Burris TE, Durrie DS. Intrastromal corneal ring segments: phase II results for the correction of myopia. Ophthalmology. 1997;104:1067–78.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Melanie Corbett
    • 1
  • Nicholas Maycock
    • 2
  • Emanuel Rosen
    • 3
  • David O’Brart
    • 4
  1. 1.Imperial College Healthcare NHS TrustLondonUK
  2. 2.University Hospital Coventry and WarwickshireCoventryUK
  3. 3.ManchesterUK
  4. 4.Department of OphthalmologySt. Thomas HospitalLondonUK

Personalised recommendations