Skip to main content

Statistically Significant Comparative Performance Testing of Julia and Fortran Languages in Case of Runge–Kutta Methods

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2018)


In this paper we compare the performance of classical Runge–Kutta methods implemented in Fortran and Julia languages. We use the technique described in technical report by Tomas Kalibera and Richard E. Jones from University of Kent. This technique allows to solve the following problems. 1. The determination of the number of runs required by the program to pass the warm-up stage (e.g. JIT-compilation, memory buffers filling). 2. The determination of the optimal number of levels of the experiment and the number of repetitions at each level for robust testing. 3. The construction of the confidence interval for the resulting average run time. For the numerical experiment we implement 6-th order classical Runge–Kutta methods in both languages in the most similar way. We also study unvectorized versions of our functions. For Julia we tested not only built-in vectorization capabilities, but also external library. For processing the results of measurements Python 3 with Matplotlib, NumPy and SciPy (stats module) were used. We carried out experiments for variety of ODE dimensions (from 2 to 64) and different types of processors. Our work may be interesting not only for the results of comparison of the new Julia language with Fortran, but also for the robust testing method demonstration.

The publication has been prepared with the support of the “RUDN University Program 5-100” and funded by Russian Foundation for Basic Research (RFBR) according to the research project No 16-07-00556.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Rigorous Benchmarking in Reasonable Time. ACM, New York, June 2013

    Google Scholar 

  2. Gnu fortran (2018).

  3. Matplotlib home site (2018).

  4. Numpy home site (2018).

  5. Python home site (2018).

  6. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  7. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: A Fast Dynamic Language for Technical Computing, September 2012

    Google Scholar 

  8. Brainerd, W.S.: Guide to Fortran 2008 Programming. Springer, London (2015).

    Book  Google Scholar 

  9. Butcher, J.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, New Zealand (2003)

    Book  Google Scholar 

  10. Chapman, S.J.: Fortran for Scientists and Engineers. McGraw-Hill Education, New York (2018)

    Google Scholar 

  11. Gevorkyan, M.N., Velieva, T.R., Korolkova, A.V., Kulyabov, D.S., Sevastyanov, L.A.: Stochastic Runge–Kutta software package for stochastic differential equations. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Dependability Engineering and Complex Systems. AISC, vol. 470, pp. 169–179. Springer, Cham (2016).

    Chapter  Google Scholar 

  12. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer, Heidelberg (2008).

    Book  MATH  Google Scholar 

  13. Hanson, R.J., Hopkins, T.: Numerical Computing With Modern Fortran. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  14. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001).

  15. Kalibera, T., Jones, R.E.: Quantifying Performance Changes with Effect Size Confidence Intervals. Technical report 4–12, University of Kent, June 2012

    Google Scholar 

  16. Rossum, G.: Python reference manual. Technical report, Amsterdam, The Netherlands (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dmitry S. Kulyabov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gevorkyan, M.N., Korolkova, A.V., Kulyabov, D.S., Lovetskiy, K.P. (2019). Statistically Significant Comparative Performance Testing of Julia and Fortran Languages in Case of Runge–Kutta Methods. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10691-1

  • Online ISBN: 978-3-030-10692-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics