Skip to main content

An Intuitionistic Fuzzy Approach to the Hungarian Algorithm

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2018)

Abstract

In the paper a new type of assignment problem is formulated, in which the costs of assigning tasks to candidates are intuitionistic fuzzy pairs. Additional constraints are formulated to the problem: an upper limit to the cost of assigning a particular resource to perform a particular activity and preferences defined in advance for assigning the resources by an index matrix. We propose for the first time the Hungarian algorithm for finding an optimal solution of this new type of assignment problem, based on the concept of index matrices.

Supported by the project of Asen Zlatarov University under Ref. No. NIX-401/2017 “Modern methods of optimization and business management”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci. 1697/84) (2016). (in Bulgarian). Reprinted: Int. J. Bioautom. 20(S1), S1–S6

    Article  MathSciNet  Google Scholar 

  2. Atanassov, K.: Generalized index matrices. Comptes rendus de l’Academie Bulgare des Sciences 40(11), 15–18 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. STUDFUZZ, vol. 283. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29127-2

    Book  MATH  Google Scholar 

  4. Atanassov, K.: Index Matrices: Towards an Augmented Matrix Calculus. Studies in Computational Intelligence, vol. 573. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10945-9

    Book  MATH  Google Scholar 

  5. Atanassov, K.: Intuitionistic Fuzzy Logics. Studies in Fuzziness and Soft Computing, vol. 351. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48953-7

    Book  MATH  Google Scholar 

  6. Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs. Notes Intuitionistic Fuzzy Sets 19(3), 1–13 (2013)

    Article  Google Scholar 

  7. Kuhn, H.: On certain convex polyhedra. Bull. Am. Math. Soc. 61, 557–558 (1955)

    Google Scholar 

  8. Rajaraman, K., Sophia Porchelvi, R., Irene Hepzibah, R.: Ones assignment method to solve intitionistic fuzzy assignment problems. J. Appl. Sci. Comput. 5(8), 252–261 (2018)

    Google Scholar 

  9. Traneva, V.: Internal operations over 3-dimensional extended index matrices. Proc. Jangjeon Math. Soc. 18(4), 547–569 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Traneva, V., Tranev, S.: Index Matrices as a Tool for Managerial Decision Making. Publ. House of the Union of Scientists, Bulgaria (2017). (in Bulgarian)

    Google Scholar 

  11. Munkres’ Assignment Algorithm. http://csclab.murraystate.edu/~bob.pilgrim/445//munkres.html. Accessed 8 May 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velichka Traneva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Traneva, V., Tranev, S., Atanassova, V. (2019). An Intuitionistic Fuzzy Approach to the Hungarian Algorithm. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham. https://doi.org/10.1007/978-3-030-10692-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10692-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10691-1

  • Online ISBN: 978-3-030-10692-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics