Advertisement

Self-Melioration, Autonomy and Music-Enriched Self-Control: On Enhancing Children’s Attention

  • Alexander Matthias GernerEmail author
Chapter
Part of the Advances in Neuroethics book series (AIN)

Abstract

This paper dwells on the question of how we can enhance perspectives on the enhancement of attention in children. By shifting the neuro-enhancement of attention debate from the field of (pediatric) biomedicine into the area of philosophy of technology of control and philosophy of attention, I render two concepts operative for the neuroethical debate on enhancing children’s attention in self- melioration: control and autonomy in attention enhancement. The shaping of a self entails three things: First, individual work on personality traits. Second, the cultural notion of collective formation in a world shaped by others. Third, it includes self-melioration (Selbstverbesserung) that contains both terms of self-formation and Kipke’s narrow account of Neuro-enhancement. Concerning attention enhancements in children music enrichment as well as mathematical skill-formation will be analysed briefly.

Notes

Acknowledgement

The research for this chapter was funded by a Post-Doc grand (SFRH/BPD/90360/2012) on “Philosophy of Cognitive Enhancement” by the Portuguese Foundation of Science and Technology (FCT).

References

  1. Agar N (2009) Humanities end. Why we should reject radical enhancement. MIT Press, CambridgeGoogle Scholar
  2. Agar N (2014) Truly human enhancement. A philosophical defense of limits. MIT Press, CambridgeGoogle Scholar
  3. Benedict C, Cedernaes J, Giedraitis V, Nilsson E, Hogenkamp P, Vågesjö E et al (2014) Acute sleep deprivation increases serum levels of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in healthy young men. Sleep 37(1):195–198CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bergman Nutley S, Söderquist S (2017) How is working memory training likely to influence academic performance? Current evidence and methodological considerations. Front Psychol 8(69):1–12Google Scholar
  5. Bergman Nutley S, Karkiand F, Klingberg T (2014) Music practice is associated with development of working memory during childhood and adolescence. Front Hum Neurosci 7:926CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bou-Habib P, Olsaretti S (2015) Autonomy and children’s wellbeing. In: Bagattini A, Macleod C (eds) The nature of children’s well-being, theory and praxis. Springer, Dordrecht, pp 15–33Google Scholar
  7. Braams B, van Duijvenvoorde A, Peper J, Crone E (2015) Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. J Neurosci 35(18):7226–7238CrossRefPubMedGoogle Scholar
  8. Brem AK, Fried P, Horvath J, Robertson E, Pascual-Leone A (2014) Is neuroenhancement by noninvasive brain stimulation a net zero-sum proposition? NeuroImage 85(3):1058–1068CrossRefPubMedGoogle Scholar
  9. Broncel A, Blizniwska K, Talarowska M (2017) How does Vagus Nerve Stimulation (VNS) affect cognition? A review. Med Sci Tech 58:67–72CrossRefGoogle Scholar
  10. Bush G, Luu P, Posner M (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4(6):215–222CrossRefPubMedGoogle Scholar
  11. Campbell N (2017) Self-forming actions, snap decisions, and indeterminism: a problem for Kane’s Libertarianism. abstracta-Linguagem, Mente e Ação 10:15–34Google Scholar
  12. Casey B, Jones R, Somervile M, Somerville L (2011) Braking and accelerating of the adolescent brain. J Res Adolesc 21(1):21–33CrossRefPubMedPubMedCentralGoogle Scholar
  13. Casey B, Galván A, Somerville L (2016) Beyond simple models of adolescence to an integrated circuit-based account: a commentary. Dev Cogn Neurosci 17:128–130CrossRefPubMedGoogle Scholar
  14. Chobert J, Francois C, Velay J, Besson M (2014) Twelve months of active musical training in 8- to 10-year-old children enhances the preattentive processing of syllabic duration and voice onset time. Cereb Cortex 24:956–967CrossRefPubMedGoogle Scholar
  15. Clayton M (2006) Justice and legitimacy in upbringing. Oxford University Press, OxfordCrossRefGoogle Scholar
  16. Clayton M (2011) Debate: the case against the comprehensive enrolment of children. J Polit Philos 20(3):353–364CrossRefGoogle Scholar
  17. Clayton M (2015) Anti-perfectionist childrearing. In: Bagattini AM (ed) The nature of children’s well-being. Theory and praxis. Springer, Dordrecht, pp 123–140Google Scholar
  18. Cragg L, Keeble S, Richardson S, Roome H, Gilmore C (2017) Direct and indirect influences of executive functions on mathematics achievement. Cognition 162:12–26CrossRefPubMedGoogle Scholar
  19. Crone E, Dahl F (2012) Understanding adolescence as a period of social-affective engagement and goal flexibility. Nat Rev Neurosci 13(9):636–650CrossRefPubMedGoogle Scholar
  20. Currie J, Stabile M, Jones L (2014) Do stimulant medications improve educational and behavioral outcomes for children with ADHD? J Health Econ 37:58–69CrossRefPubMedPubMedCentralGoogle Scholar
  21. de Jongh R, Bolt I, Schermer M, Olivier B (2008) Botox for the brain: enhancement of cognition, mood and pro-social behavior and blunting of unwanted memories. Neurosci Biobehav Rev 32(4):760–776CrossRefPubMedGoogle Scholar
  22. Diamond A, Lee K (2011) Interventions shown to aid executive function development in children 4 to 12 years old. Science 333:959–964CrossRefPubMedPubMedCentralGoogle Scholar
  23. Diamond A, Barnett W, Thomas J, Munro S (2007) Preschool program improves cognitive control. Science 318(5855):1387–1388CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dobrynin N (1958) Proizvol’noe i posleproizvol’noe vnimanie (Voluntary and post-voluntary attention). Uchenyye zapiski Moskovskogo gorodskogo pedagogicheskogo instituta imeni VP Potyomkina 81:5–61Google Scholar
  25. Dormachev Y (2011) Flow experience explained on the grounds of an activity approach to attention. In: Bruya B (ed) Effortless attention. A new perspective in the cognitive science of attention and action (trans: Osin E). The MIT Press, Cambridge, pp 287–333Google Scholar
  26. Dumont E, Syurina E, Feron F, van Hooren S (2017) Music interventions and child development: a critical review and further directions. Front Psychol 8:1694CrossRefPubMedPubMedCentralGoogle Scholar
  27. Eme R (2016) The neuroscience of ADHD, the paradigmatic disorder of self-control. J Law Biosci 3(2):350–354CrossRefGoogle Scholar
  28. Feigensohn L, Dehaene S, Spelke E (2004) Core systems of numbers. Trends Cogn Sci 8:307–314CrossRefGoogle Scholar
  29. Feinberg J (1989) Harm to self. The moral limits of criminal law. Oxford University Press, New York, OxfordCrossRefGoogle Scholar
  30. Fox K, Fitz N, Reiner B (2017) The multiplicity of memory enhancement: practical and ethical implications of the diverse neural substrates underlying human memory systems. Neuroethics 10(3):375–388CrossRefGoogle Scholar
  31. Gerner A (2014) Enhancement as deviation. Notes on a philosophy of enhancement. Cadernos Mateus Doc 7:95–121Google Scholar
  32. Gordijn B, Chadwick R (2008) Introduction. In: Gordijn B, Chadwick R (eds) Medical enhancement and posthumanity. Springer, Dordrecht, pp 1–5Google Scholar
  33. Gordon R, Fehd H, McCandliss B (2015) Does music training enhance literacy skills? A meta-analysis. Front Psychol 6:1777CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gottschalk-Mazuoz N (2008) ‘Autonomie’ und die Autonomie autonomer technischer Systeme. http://www.dgphil2008.de/fileadmin/ download: www.dgphil2008.de/fileadmin/download. Accessed 16 Mar 2017
  35. Gransche B, Shala B, Hubig C, Alspancar S, Harrach S (2014) Wandel von Autonomie und Kontrolle durch neue Mensch-Technik-Interaktionen. Grundsatzfragen autonomieorientierter Mensch-Technik-Verhältnisse. Fraunhofer Verlag, StuttgartGoogle Scholar
  36. Habermas J (2001) Die Zukunft der menschlichen Natur: Auf dem Weg zu einer Liberalen Eugenik. Suhrkamp, FrankfurtGoogle Scholar
  37. Habibi A, Cahn B, Damasio A, Damasio H (2016) Neural correlates of accelerated auditory processing in children engaged in music training. Dev Cogn Neurosci 21:1–14CrossRefPubMedGoogle Scholar
  38. Hayles K (2007) Hyper and deep attention. The general divide in cognitive modes. Profession (1):187–199CrossRefGoogle Scholar
  39. Hellinger J (2010) Anthropologie und Ethik des Enhancements, vol 7, =De Gruyter HUMANPROJECT edn. de Gruyter, Berlin, New YorkGoogle Scholar
  40. Hubig C (2015) Die Kunst des Möglichen III. Macht der Technik. Transcript, BielefeldGoogle Scholar
  41. Hyde K, Lerch J, Norton A, Forgeard M, Winner E, Evans A, Schlaugg G (2009) Music training shapes structural brain development. J Neurosci 29(10):3019–3025CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jolles D, Crone E (2012) Training the developing brain: a neurocognitive perspective. Front Hum Neurosci 6:76CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jones M, Boltz M (1989) Dynamic attending and responses to time. Psychol Rev 96(3):459–491CrossRefPubMedGoogle Scholar
  44. Kaldis B (2010) Brave new world: transhumanism, prosthesis & enhancement debates. Pheade 2010—the engineered singularity. http://www.complexity.ro/arhiva2013/documente/Book_of_abstracts_PHEADE_2010.pdf. Accessed 4 June 2017
  45. Kane R (1998) The significance of free will. Oxford University Press, New YorkGoogle Scholar
  46. Kersting W (2007) Einleitung: Die Gegenwart der Lebenskunst. In: Kersting W, Langbehn C (eds) Kritik der Lebenskunst. Suhrkamp, Frankfurt, pp 7–88Google Scholar
  47. Kilpinen E (2009) The habitual conception of action and social theory. Semiotica 173(1–4):99–128Google Scholar
  48. Kipke R (2011) Besser werden—Eine ethische Untersuchung zu Selbstformung und Neuro-Enhancement. Mentis, PaderbornGoogle Scholar
  49. Kipke R (2013) What is cognitive enhancement and is it justified to point out this kind of enhancement within the ethical discussion? In: Hildt E, Franke A (eds) Cognitive enhancement. An interdisciplinary perspective. Springer, Heidelberg, pp 145–158Google Scholar
  50. Kraus N, Slater J, Thompson E, Hornickel J, Strait D, Nicol T, White-Schwoch W (2014) Music enrichment programs improve the neural encoding of speech in at-risk children. J Neurosci 34(36):11913–11918CrossRefPubMedGoogle Scholar
  51. Kuhn J, Holling H (2014) Number sense or working memory? The effects of two computer-based trainings on mathematical skills in elementary school. Adv Cogn Psychol 10(2):59–67CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lehmann-Rommel R (2016) Aufmerksamkeit und Subjektbildung aus pragmatistischer Sicht. In: Reh S, Berdelmann K, Dinkelaker J (eds) Aufmerksamkeit. Springer Fachmedien, Wiesbaden, pp 147–169Google Scholar
  53. Lenk C (2011) Enhancement vor dem Hintergrund verschiedener Konzepte von Gesundheit und Krankheit. In: Viehöver W, Wehling P (eds) Entgrenzung der Medizin. Von der Heilkunst zur Verbesserung des Menschen? Transcript, Bielefeld, pp 77–88Google Scholar
  54. Levy N (2007) Neuroethics. Challenges for the 21st century. Cambridge University Press, Cambridge, New YorkCrossRefGoogle Scholar
  55. Looi C, Kadosh C (2016) Brain stimulation, mathematical, and numerical training: contribution of core and noncore skills. Prog Brain Res 227:353–388CrossRefPubMedGoogle Scholar
  56. Luber B (2014) Neuroenhancement by noninvasive brain stimulation is not a net zero-sum proposition. Front Syst Neurosci 8:127CrossRefPubMedPubMedCentralGoogle Scholar
  57. McGough J, Loo S, Sturm A, Cowen J, Leuter A, Cook I (2015) An eight-week, open-trial, pilot feasibility study of trigeminal nerve stimulation in youth with attention-deficit/hyperactivity disorder. Brain Stimul 8:299–304CrossRefPubMedGoogle Scholar
  58. Mckeown A (2017) Enhancement and therapy: is it possible to draw a line? In: ter Meulen R, Mohamed A, Hall W (eds) Rethinking cognitive enhancement. Oxford University Press, Oxford, pp 193–212CrossRefGoogle Scholar
  59. Merrett D, Peretz I, Wilson S (2013) Moderating variables of music-training induced neuroplasticity: a review and discussion. Front Psychol 4:606CrossRefPubMedPubMedCentralGoogle Scholar
  60. Miendlarzewska E, Trost W (2014) How musical training affects cognitive development: rhythm, reward and other modulating variables. Front Neurosci 7:279CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mills K, Goddings A, Clasen L, Giedd J, Blakemore S (2014) The developmental mismatch in structural brain maturation during adolescence. Dev Neurosci 36:147–160CrossRefPubMedGoogle Scholar
  62. Moneta G (2012) On the measurement and conceptualization of flow. In: Engeser S (ed) Advances in flow research. Springer, New York, pp 23–50CrossRefGoogle Scholar
  63. Müller U, Rowe J, Rittman T, Lewis C, Robbins T, Sahakian B (2013) Effects of modafinil on non-verbal cognition, task enjoyment and creative thinking in healthy volunteers. Neuropharmacology 64:490–495CrossRefPubMedPubMedCentralGoogle Scholar
  64. Noreika V, Falter C, Rubia K (2013) Timing deficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies. Neuropsychologia 51:235–266CrossRefPubMedGoogle Scholar
  65. Oechslin M, Van De Ville D, Lazeyras F, Hauert CA, James C (2013) Degree of musical expertise modulates higher-order brain functioning. Cereb Cortex 23(9):2213–2224CrossRefPubMedGoogle Scholar
  66. Osberg D, Biesta G, Cilliers P (2008) From representation to emergence: complexity’s challenge to the epistemology of schooling. Educ Philos Theory 40:213–227CrossRefGoogle Scholar
  67. Pallesen K, Brattico C, Korvenoja A, Koivisto J, Gjedde A (2010) Cognitive control in auditory working memory is enhanced in musicians. PLoS One 5:e11120CrossRefPubMedPubMedCentralGoogle Scholar
  68. Passulunghi M, Lanfranchi S (2012) Domain-specific and domain-general precursors of mathematical achievement: a longitudinal study from kindergarten to first grade. Br J Educ Psychol 82(1):42–63CrossRefGoogle Scholar
  69. Peake P, Hebl M, Mischel W (2002) Strategic attention deployment in waiting and working situations. Dev Psychol 38:313–326CrossRefPubMedGoogle Scholar
  70. Peirce C (1958) Collected papers (Thoemmes Press [1931–1958] ed.). Burks (ed). Hartshorne and Weiss, LondonGoogle Scholar
  71. Peper J, Koolschijn P, Crone E (2013) Development of risk taking: contributions from adolescent testosterone and the orbito-frontal cortex. J Cogn Neurosci 25:2141–2150CrossRefPubMedGoogle Scholar
  72. Ray K (2016) Not just “study drugs” for the rich: stimulants as moral tools for creating opportunities for socially disadvantaged students. Am J Bioeth 16(6):29–38CrossRefPubMedGoogle Scholar
  73. Reinhart R (2017) Disrupting and rescue of interareal theta phase coupling and adoptive behavior. PNAS 114(43):11542–11547CrossRefPubMedGoogle Scholar
  74. Repantis D, Schlattmann P, Laisney O, Heuser I (2010) Review modafinil and methylphenidate for neuroenhancement in healthy individuals: a systematic review. Pharmacol Res 62(3):187–206CrossRefPubMedGoogle Scholar
  75. Rickard N, Vasquez J, Murphy F, Gill A, Toukhsati SR (2010) Benefits of classroom based instrumental music program on verbal memory of primary school children: a longitudinal study. Aust J Music Educ 1:36–47Google Scholar
  76. Roden I, Könen T, Bongard S, Frankenberg E, Friedrich E, Kreutz G (2014) Effects of music training on attention, processing speed and cognitive music abilities-findings from a longitudinal study. Appl Cogn Psychol 28:545–557CrossRefGoogle Scholar
  77. Rubinsten O, Henik A (2009) Developmental dyscalculia: heterogeneity might not mean different mechanisms. Trends Cogn Sci 13(2):92–99CrossRefPubMedGoogle Scholar
  78. Sala G, Gobet F (2017) When the music’s over. Does music skill transfer to children’s and young adolescents’ cognitive and academic skills? A meta-analysis. Educ Res Rev 20:55–67CrossRefGoogle Scholar
  79. Sandel M (2004) The case against perfection. Atlantic Monthly:51–61Google Scholar
  80. Schachar R, Chen S, Logan G, Ornstein T, Crosbie J, Ickowicz A, Pakulak A (2004) Evidence for an error monitoring deficit in attention deficit hyperactivity disorder. J Abnorm Child Psychol 32(3):285–293CrossRefPubMedGoogle Scholar
  81. Schermer M (2007) The dynamics of the treatment-enhancement distinction: ADHD as a case study. Philosophica 79:25–37Google Scholar
  82. Schickhardt C (2016) Kinderethik. Der moralische Status und die Rechte der Kinder, 2nd rev. ed. Mentis, MainzGoogle Scholar
  83. Serrallach B, Groß C, Bernhofs V, Engelmann D, Benner J, Gündert N et al (2016) Neural biomarkers for dyslexia, ADHD, and ADD in the auditory cortex of children. Front Neurosci 10(324):1–23Google Scholar
  84. Sharpe K (2014a) Evidence is mounting that medication for ADHD doesn’t make a lasting difference to schoolwork or achievement. Nature 506:147–148CrossRefGoogle Scholar
  85. Sharpe K (2014b) The smart-pill oversell. Nature 506:146–148CrossRefPubMedGoogle Scholar
  86. Singh I, Wessely S (2015) Childhood: a suitable case for treatment? Lancet Psychiatry 2(7):661–666CrossRefPubMedGoogle Scholar
  87. Skoe E, Kraus N (2012) A little goes a long way: how the adult brain is shaped by musical training in childhood. J Neurosci 32:11507–11510CrossRefPubMedGoogle Scholar
  88. Snowball A, Tachtsidis I, Popescu T, Thompson J, Delazer M, Zamarian L et al (2013) Long-term enhancement of brain functions and cognition using cognitive training and brain stimulation. Curr Biol 23(11):987–992CrossRefPubMedPubMedCentralGoogle Scholar
  89. Söderqvist S, Bergman Nutley S (2015) Working memory training is associated with long term attainments in math and reading. Front Psychol 6(1711):1–9Google Scholar
  90. Steinberg L (2008) A social neuroscience perspective on adolescent risk-taking. Dev Rev 28:78–106CrossRefPubMedPubMedCentralGoogle Scholar
  91. Steinberg L (2013) The influence of neuroscience on U.S. Supreme Court decisions about adolescents’ criminal culpability. Nat Rev Neurosci 14:513–518CrossRefPubMedGoogle Scholar
  92. Strait D, Kraus N (2011a) Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise. Front Psychol 2:113CrossRefPubMedPubMedCentralGoogle Scholar
  93. Strait D, Kraus N (2011b) Playing music for a smarter ear: cognitive, perceptual and neurobiological evidence. Music Percept 29(2):133–147CrossRefPubMedPubMedCentralGoogle Scholar
  94. Strait D, Kraus N (2014) Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hear Res 308:109–121CrossRefPubMedGoogle Scholar
  95. Strait D, Slater J, Abecassis V, Kraus N (2014) Cortical response variability as a developmental index of selective auditory attention. Dev Sci 17(2):175–186CrossRefPubMedGoogle Scholar
  96. Strait D, Slater J, O’Connella S, Kraus N (2015) Music training relates to the development of neural mechanisms of selective auditory attention. Dev Cogn Neurosci 12:94–104CrossRefPubMedGoogle Scholar
  97. Streuli J (2015) The concept of best interests in clinical practice. In: Bagattini A, Macleod C (eds) The nature of children’s wellbeing: indicators and research. Springer, Dordrecht, pp 179–190Google Scholar
  98. Stuss D, Alexander M (2000) Executive functions and the frontal lobes: a conceptual view. Psychol Res 63:289–298CrossRefPubMedGoogle Scholar
  99. Sun L, Peräkyla J, Holm K, Haapasalo J, Lehtimäki K, Ogawa K (2017) Vagus nerve stimulation improves working memory performance. J Clin Exp Neuropsychol 39(10):954–964PubMedPubMedCentralGoogle Scholar
  100. Szüks D, Devine A, Soltesz F, Nobes A, Gabriel F (2014) Cognitive components of a mathematical processing network in 9-year-old children. Dev Sci 17(4):506–524CrossRefGoogle Scholar
  101. Tao T, Wang L, Fan C, Gao W (2014) Development of self-control in children aged 3 to 9 years: perspective from a dual-systems model. Sci Rep 4(7272):1–5Google Scholar
  102. Tierney A, Kraus N (2013) The ability to tap to beat relates to cognitive, linguistic, and perceptual skills. Brain Lang 124:225–231CrossRefPubMedPubMedCentralGoogle Scholar
  103. Tillman C, Brocki K, Sørensen L, Lundervold A (2015) A longitudinal examination of the developmental executive function hierarchy in children with externalizing behavior problems. J Atten Disord 19(6):496–506CrossRefPubMedGoogle Scholar
  104. Urošević S, Collins P, Muetzel R, Lim K, Luciana M (2012) Longitudinal changes in behavioral approach system sensitivity and brain structures involved in reward processing during adolescence. Dev Psychol 48:1488–1500CrossRefPubMedPubMedCentralGoogle Scholar
  105. Uttal D, Meadow N, Newcombe N, Tipton E, Hand L, Alden A, Warren C (2013) The malleability of spatial skills: a meta-analysis of training studies. Psychol Bull 139(2):352–402CrossRefPubMedGoogle Scholar
  106. van Meel C, Heslenfeld D, Oosterlaan O, Sergeant J (2007) Adoptive control deficits in attention-deficit/hyperactivity disorder (ADHD): the role of error processing. Psychiatry Res 155(3):211–220CrossRefGoogle Scholar
  107. Volkow N, Volkow N, Wang G, Kollins S, Wigal T, Newcorn J et al (2009) Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA 302(10):1084–1091CrossRefPubMedPubMedCentralGoogle Scholar
  108. Volkow N, Fowler J, Wang G, Telang F, Logan J et al (2010) Cognitive control of drug craving inhibits brain reward regions in cocaine abusers. NeuroImage 49:2536–2543CrossRefPubMedGoogle Scholar
  109. Volkow N, Wang G, Newcorn J, Kollins S, Wigal T, Telang F et al (2011) Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry 16(11):1147–1154CrossRefPubMedGoogle Scholar
  110. von Gleich A (2013) Prospektive Technikbewertung und Technikgestaltung zur Umsetzung des Vorsorgeprinzips. In: Simonis G (ed) Konzepte und Verfahren der Technikfolgenabschätzung. Springer Fachmedien, Wiesbaden, pp 51–73CrossRefGoogle Scholar
  111. Wan C, Schlaug G (2010) Music making as a tool for promoting brain plasticity across the life span. Neuroscientist 16(5):566–577CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wiesemann C (2016) Moral equality, bioethics and the child. Springer, New YorkCrossRefGoogle Scholar
  113. Wilson K, Swanson H (2001) Are mathematics disabilities due to a domain-general or a domain-specific working memory deficit? J Learn Disabil 34(3):237–248CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zatorre R, Chen J, Penhune V (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8(7):547–558CrossRefPubMedGoogle Scholar
  115. Graf WD, Miller G, Nagel SK (2014) Addressing the problem of ADHD medication as neuroenhancements. Expert Rev Neurother 14(5):569–581.  https://doi.org/10.1586/14737175.2014.908707CrossRefPubMedPubMedCentralGoogle Scholar
  116. William D Graf, Geoffrey Miller, Saskia K Nagel, (2014) Addressing the problem of ADHD medication as neuroenhancements. Expert Review of Neurotherapeutics 14 (5):569-581CrossRefPubMedGoogle Scholar
  117. Mix KS, Levine SC, Cheng Y-L, Young C, Hambrick DZ, Ping R, Konstantopoulos S (2016) Separate but correlated: the latent structure of space and mathematics across development. J Exp Psychol Gen 145(9):1206–1227.  https://doi.org/10.1037/xge0000182CrossRefPubMedPubMedCentralGoogle Scholar
  118. Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324(5931):1207–1210CrossRefPubMedPubMedCentralGoogle Scholar
  119. Parens E (2014) Shaping ourselves. On technology, flourishing and a habit of thinking. Oxford University Press, OxfordCrossRefGoogle Scholar
  120. Mischel W, Ayduk O (2011) Willpower in a cognitive affective processing system. The dynamics of delay of gratification. In: Vohs KD, Baumeister R (eds) Handbook of self-regulation. Research theory and applications, 2nd edn. The Guilford Press, New York, pp 83–105Google Scholar
  121. Becker MG, Isaac W, Hynd GW (1987) Neuropsychological development of nonverbal behaviors attributed to the frontal lobes. Dev Neuropsychol 3:275–298Google Scholar
  122. Bialystok E, Martin MM, Viswanathan M (2005) Bilingualism across the lifespan: the rise and fall of inhibitory control. Int J Bilingualism 9:103–119. https://doi.org/10.1177/13670069050090010701CrossRefGoogle Scholar
  123. Booth JR, Burman DD, Meyer JR, Lei Z, Trommer BL, Davenport ND, Li W, Parrish TB, Gitelman DR, Mesulam MM (2003) Neural development of selective attention and response inhibition. Neuroimage 20:737–751CrossRefPubMedGoogle Scholar
  124. Williams BR, Ponesse JS, Schachar RJ, Logan GD, Tannock R (1999) Development of inhibitory control across the life span. Dev Psychol 35(1):205–213. https://doi.org/10.1037/0012-1649.35.1.205CrossRefPubMedGoogle Scholar
  125. Luna B, Thulborn KR, Munoz DP, Merriam EP, Garver KE, Minshew NJ et al (2001) Maturation of widely distributed brain function subserves cognitive development. Neuroimage 13:786–793CrossRefPubMedGoogle Scholar
  126. Tipper SP, Bourque TA, Anderson SH, Brehaut JC (1989) Mechanisms of attention: a developmental study. J Exp Child Psychol 48:353–378.CrossRefPubMedGoogle Scholar
  127. Steven P. Tipper, Tracy A. Bourque, Susan H. Anderson, Jamie C. Brehaut, (1989) Mechanisms of attention: A developmental study. Journal of Experimental Child Psychology 48 (3):353-378CrossRefPubMedGoogle Scholar
  128. Adam T. Tierney, Jennifer Krizman, Nina Kraus, (2015) Music training alters the course of adolescent auditory development. Proceedings of the National Academy of Sciences 112 (32):10062-10067CrossRefGoogle Scholar
  129. Gerner, A. (2017). Philosophical outlook on Avatars as Enhanced Embodied Techniques of Self and Other in Schizophrenia Therapy. In O. Pombo, & P. Castro (Eds.), Debates da Filosofia da Ciência Contemporânea VIII Jornadas Ibéricas de Filosofia da Ciência (Vol. 10, pp. 301-321). Lisbon, Lisbon, Portugal: CFCUL. Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CFCUL, Centro de Filosofia das Ciências da Universidade de LisboaLisbonPortugal

Personalised recommendations