Biophysics of Vision



The function of the visual system is far beyond simply focusing the light beams to produce an image. To picture the adaptations to reduce the artifact and enhance the quality of the image, in the first section, we follow the light beams, as they are incident on the surface of the cornea to focus on the retina. We also explained the dynamic mechanisms to produce images of the objects in motion, at different distances, and under various luminances. In the second section, we further explore how the function of the visual system is interwoven with alterations in the magnetic field: visual system provides the components of the magnetic field perception, and the magnetic field affects visual properties. We also introduce the circadian rhythmicity and the modulating role of visual system on it, either directly or indirectly, through conveying the light/dark information and geomagnetic alterations to the brain.

To offer a deeper understanding of the physical concepts and their application in biological events, we have provided five boxes. In Box 3.1, optical instruments for focusing a beam of light, fundamentals of refraction, and optical characteristics of the cornea and crystalline lens in normal and pathologic conditions are introduced. Box 3.2 explains diffraction and the role of pupil size in minimizing it. Box 3.3 provides detailed background on the geomagnetic perception and its interaction with visual functions and offers four mechanisms underlying the perception of slight magnetic field alterations. In Box 3.4, the key features of space weather and its manifestation on Earth’s magnetic field and human physiology or pathologies are presented. Finally, Box 3.5 provides more information about circadian rhythms.


Biophysics Circadian rhythms Distance Electromagnetic field Geomagnetic field Light Magnetic field Motion Space Vision 


  1. 1.
    Spadea L, et al. Effect of corneal light scatter on vision: a review of the literature. Int J Ophthalmol. 2016;9(3):459.
  2. 2.
    Atchison DA, Smith G. Optics of the human eye. Oxford: Butterworth-Heineman; 2000. p. 1–19.Google Scholar
  3. 3.
    Yasuda A, Yamaguchi T. Steepening of corneal curvature with contraction of the ciliary muscle. J Cataract Refract Surg. 2005;31(6):1177–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Yasuda A, Yamaguchi T, Ohkoshi K. Changes in corneal curvature in accommodation. J Cataract Refract Surg. 2003;29(7):1297–301.CrossRefPubMedGoogle Scholar
  5. 5.
    Costello MJ, Mohamed A, Gilliland KO, Fowler WC. Ultrastructural analysis of the human lens fiber cell remodeling zone and the initiation of cellular compaction. Exp Eye Res [Internet]. 2013;116:411–8. Available from:
  6. 6.
    Jones CE, Atchison DA, Meder R, Pope JM. Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI). Vis Res. 2005;45:2352–66.CrossRefPubMedGoogle Scholar
  7. 7.
    Donaldson PJ, Grey AC, Maceo Heilman B, Lim JC, Vaghefi E. The physiological optics of the lens. Prog Retin Eye Res. 2017;56:e1–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Mathias RT, Kistler J, Donaldson P. The lens circulation. J Membr Biol. 2007;216(1):1–16.CrossRefPubMedGoogle Scholar
  9. 9.
    Land M. Focusing by shape change in the lens of the eye: a commentary on Young (1801) “On the mechanism of the eye”. Philos Trans R Soc B Biol Sci [Internet]. 2015;370(1666):20140308. Available from: Scholar
  10. 10.
    Vaghefi E, Pontre BP, Jacobs MD, Donaldson PJ. Visualizing ocular lens fluid dynamics using MRI: manipulation of steady state water content and water fluxes. Am J Physiol Regul Integr Comp Physiol. 2011;301:335–42.CrossRefGoogle Scholar
  11. 11.
    Birkenfeld J, De Castro A, Ortiz S, Pascual D, Marcos S. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism. Vision Res [Internet]. 2013;86:27–34. Available from:
  12. 12.
    Buehren TF, Collins MJ, Loughridge JS, Carney LG, Iskander DR. Corneal topography and accommodation. Cornea. 2003;22(4):311–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Lopping B, Weale RA. Changes in corneal curvature following ocular convergence. Vis Res. 1965;5:207–15.CrossRefPubMedGoogle Scholar
  14. 14.
    Sisó-Fuertes I, Domínguez-Vicent A, Del Águila-Carrasco A, Ferrer-Blasco T, Montés-Micó R. Corneal changes with accommodation using dual Scheimpflug photography. J Cataract Refract Surg. 2015;41(5):981–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Read SA, Buehren T, Collins MJ. Influence of accommodation on the anterior and posterior cornea. J Cataract Refract Surg. 2007;33(11):1877–85.CrossRefPubMedGoogle Scholar
  16. 16.
    Ni Y, Liu X, Lin Y, Guo X, Wang X, Liu Y. Evaluation of corneal changes with accommodation in young and presbyopic populations using Pentacam High Resolution Scheimpflug system. Clin Exp Ophthalmol. 2013;41(3):244–50.PubMedGoogle Scholar
  17. 17.
    Gambra E, Wang Y, Yuan J, Kruger PB, Marcos S. Dynamic accommodation with simulated targets blurred with high order aberrations. Vis Res. 2010;50(19):1922–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Parnell J, Alexander Q. Depth perception in humans and animals. Durham theses, Durham University. 2015. Available at Durham E-Theses online:
  19. 19.
    Westheimer G. Directional sensitivity of the retina: 75 years of Stiles – Crawford effect. Proc R Soc B Biol Sci. 2008;275(September):2777–86.CrossRefGoogle Scholar
  20. 20.
    Stiles WS, Crawford BH. The luminous efficiency of rays entering the eye pupil at different points. Proc R Soc Lond Ser B, containing papers of a biological character. 1933;112(778):428–50.
  21. 21.
    Runders MC. The Stiles-Crawford effect and an experimental determination of its impact on vision. PhD thesis. Indiana University. 1994;56(05):Section B, 2694. Available from:
  22. 22.
    Atchison DA, Scott DH, Strang NC, Artal P. Influence of Stiles-Crawford apodization on visual acuity. J Opt Soc Am A Opt Image Sci Vis [Internet]. 2002;19(6):1073–83. Available from:
  23. 23.
    Vohnsen B, Iglesias I, Artal P. Guided light and diffraction model of human-eye photoreceptors. J Opt Soc Am A. 2005;22(11):2318–28.CrossRefGoogle Scholar
  24. 24.
    Gorrand J-M, Delori FC. A model for assessment of cone directionality. J Mod Opt. 1997;44(3):473–91.CrossRefGoogle Scholar
  25. 25.
    Vohnsen B. Directional sensitivity of the retina: a layered scattering model of outer-segment photoreceptor pigments. Biomed Opt Express [Internet]. 2014;5(5):1569. Available from: Scholar
  26. 26.
    Westheimer BYG. Dependence of the magnitude of the Stiles-Ceawford effect on retinal location. J Physiol. 1967;192:309–15.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Van Loo JA, Enoch JM. The scotopic Stiles-Crawford effect. Vis Res. 1975;15(8–9):1005–9.PubMedGoogle Scholar
  28. 28.
    Enoch JM, Hope GM. Directional sensitivity of the foveal and parafoveal retina. Investig Ophthalmol. 1973;12(7):497–503.Google Scholar
  29. 29.
    Fuortes MG, Gunkel RD, Rushton WA. Increment thresholds in a subject deficient in cone vision. J Physiol. 1961;156:179–92.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vaney DI, Sivyer B, Taylor WR. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci [Internet]. 2012;13(3):194–208. Available from:
  31. 31.
    Sastre A, Graham C, Cook MR, Gerkovich MM, Gailey P. Human EEG responses to controlled alterations of the Earth’s magnetic field. Clin Neurophysiol. 2002;113:1382–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Taylor BK, Johnsen S, Lohmann KJ. Detection of magnetic field properties using distributed sensing: a computational neuroscience approach. Bioinspir Biomim [Internet]. 2017;12(3):1–12. Available from: Scholar
  33. 33.
    Qin S, Yin H, Yang C, et al. A magnetic protein biocompass. Nat Mater [Internet]. 2015;15(2):217–26. Available from:
  34. 34.
    Palmer SJ, Rycroft MJ, Cermack M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys. 2006;40(12):1941–51.Google Scholar
  35. 35.
    Johnsen S, Lohmann KJ. The physics and neurobiology of magnetoreception. Nat Rev Neurosci [Internet]. 2005;6(9):703–12. Available from:
  36. 36.
    Wiltschko W, Wiltschko R. Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften. 2002;89(10):445–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Solov’yov IA, Schulten K, Solov IA, Schulten K. Reaction kinetics and mechanism of magnetic field effects in cryptochrome. J Phys Chem B. 2012;116:1089–99.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Semm P. Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp Biochem Physiol Part A Physiol. 1983;76(4):683–9.CrossRefGoogle Scholar
  39. 39.
    Reuss S, Olcese J. Magnetic field effects on the rat pineal gland: role of retinal activation by light. Neurosci Lett. 1986;64(1):97–101.CrossRefPubMedGoogle Scholar
  40. 40.
    Cremer-Bartels G, Krause K, Mitoskas G, Brodersen D. Magnetic field of the earth as additional zeitgeber for endogenous rhythms? Naturwissenschaften. 1984;71(11):567–74.CrossRefPubMedGoogle Scholar
  41. 41.
    Thoss F, Bartsch B. The geomagnetic field influences the sensitivity of our eyes. Vis Res. 2007;47:1036–41.CrossRefPubMedGoogle Scholar
  42. 42.
    Goldman BD. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms. 2016;16(4):283.CrossRefGoogle Scholar
  43. 43.
    Díaz NM, Morera LP, Guido ME. Melanopsin and the non-visual photochemistry in the inner retina of vertebrates. Photochem Photobiol. 2016;92(1):29–44.CrossRefPubMedGoogle Scholar
  44. 44.
    Guido ME, Garbarino-Pico E, Contin MA, et al. Inner retinal circadian clocks and non-visual photoreceptors: novel players in the circadian system. Prog Neurobiol. 2010;92(4):484–504.CrossRefPubMedGoogle Scholar
  45. 45.
    Ramsey DJ, Ramsey KM, Vavvas DG. Genetic advances in ophthalmology: the role of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells in the circadian organization of the visual system. Semin Ophthalmol [Internet]. 2013;28(5–6):406–21. Available from:
  46. 46.
    Remé C, Wirz-Justice A, Rhyner A, Hofmann S. Circadian rhythm in the light response of rat retinal disk-shedding and autophagy. Brain Res. 1986;369:356–60.CrossRefPubMedGoogle Scholar
  47. 47.
    Ebihara S, Tsuji K. Entrainment of the circadian activity rhythm to the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol Behav. 1980;24(3):523–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Keeler CE. Iris movements in blind mice. Am J Physiol Content. 1927;81(1):107–12.CrossRefGoogle Scholar
  49. 49.
    González Fleitas MF, Bordone M, Rosenstein RE, Dorfman D. Effect of retinal ischemia on the non-image forming visual system. Chronobiol Int [Internet]. 2014;3672(February 2017):1–12. Available from:
  50. 50.
    Zanello SB, Nguyen A, Theriot CA. Retinal non-visual photoreception in space. Aviat Sp Environ Med. 2013;84(12):1277–80.CrossRefGoogle Scholar
  51. 51.
    Mirick DK, Davis S. Melatonin as a biomarker of circadian dysregulation. Cancer Epidemiol Biomark Prev. 2008;17(12):3306–13.CrossRefGoogle Scholar
  52. 52.
    Semm P, Demaine C. Electrical responses to direct and indirect photic stimulation of the pineal gland in the pigeon. J Neural Transm. 1983;58(3):281–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Roney-Dougal SM, Vogl G. Some speculations on the effect of geomagnetism on the pineal gland 1. J Soc Psych Res. 1993;59:1–11.Google Scholar
  54. 54.
    Reiter RJ. Electromagnetic fields and melatonin production. Biomed Pharmacother [Internet]. 1993;47(10):439–44. Available from:
  55. 55.
    Yamanaka Y, Suzuki Y, Todo T, Honma K, Honma S. Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice. Genes Cells. 2010;15(10):1063–71.CrossRefPubMedGoogle Scholar
  56. 56.
    Dardente H, Menet JS, Poirel VJ, et al. Melatonin induces Cry1 expression in the pars tuberalis of the rat. Mol Brain Res. 2003;114(2):101–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Poirel VJ, Boggio V, Dardente H, Pevet P, Masson-Pevet M, Gauer F. Contrary to other non-photic cues, acute melatonin injection does not induce immediate changes of clock gene mRNA expression in the rat suprachiasmatic nuclei. Neuroscience. 2003;120(3):745–55.CrossRefPubMedGoogle Scholar
  58. 58.
    Miller I. Review article pineal gland, DMT & altered state of consciousness. J Conscious Explor Res. 2013;4(2):214–33.Google Scholar
  59. 59.
    Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine. 2005;27(2):131–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Bartsch C, Bartsch H. The anti-tumor activity of pineal melatonin and cancer enhancing life styles in industrialized societies. Cancer Causes Control. 2006;17(4):559–71.CrossRefPubMedGoogle Scholar
  61. 61.
    Malpaux B, Migaud M, Tricoire H, Chemineau P. Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin. J Biol Rhythms [Internet]. 2001;16(4):336–47. Available from: Scholar
  62. 62.
    Borjigin J, Zhang LS, Calinescu A-A. Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol. 2012;349(1):13–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Wetterberg L, Bratlid T, Eberhard G. A multinational study of the relationships between nighttime urinary melatonin production, age, gender, body size, and latitude. Eur Arch Psychiatry Clin Neurosci. 1999;249:256–62.CrossRefPubMedGoogle Scholar
  64. 64.
    Thalen B-E, Morkrid L, BF Kjellman LW. Cortisol in light treatment of seasonal and non-seasonardemession: relationshib between melatobin and cortisol. Acta Psychiatr Scand. 1997;96:385–94.CrossRefPubMedGoogle Scholar
  65. 65.
    Thalen BE, Kjellman BF, Mørkrid L, Wetterberg L. Melatonin in light treatment of patients with seasonal and nonseasonal depression. Acta Psychiatr Scand. 1995;92(4):274–84.CrossRefPubMedGoogle Scholar
  66. 66.
    Messager S, Hazlerigg DG, Mercer JG, Morgan PJ. Photoperiod differentially regulates the expression of Per1 and ICER in the pars tuberalis and the suprachiasmatic nucleus of the Siberian hamster. Eur J Neurosci. 2000;12(8):2865–70.CrossRefPubMedGoogle Scholar
  67. 67.
    Messager S, Garabette ML, Hastings MH, Hazlerigg DG. Tissue-specific abolition of Per1 expression in the pars tuberalis by pinealectomy in the Syrian hamster. Neuroreport. 2001;12(3):579–82.CrossRefPubMedGoogle Scholar
  68. 68.
    Grota LJ, Holloway WR, Brown GM. 24-Hour rhythm of hypothalamic melatonin immunofluorescence correlates with serum and retinal melatonin. Neuroendocrinology. 1982;34:363–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Velarde E, Cerdá-Reverter JM, Alonso-Gómez AL, Sánchez E, Isorna E, Delgado MJ. Melatonin-synthesizing enzymes in pineal, retina, liver, and gut of the goldfish (Carassius): mRNA expression pattern and regulation of daily rhythms by lighting conditions. Chronobiol Int [Internet]. 2010;27(6):1178–201. Available from: Scholar
  70. 70.
    Cardinali DP, Rosner JM. Retinal localization of the hydroxyindole-O-methyl transferase (HIOMT) in the rat. Endocrinology. 1971;89(1):301–3.CrossRefPubMedGoogle Scholar
  71. 71.
    Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71(16):2997–3025.CrossRefPubMedGoogle Scholar
  72. 72.
    Dubocovich ML. Role of melatonin in retina. Prog Retin Res. 1988;8(C):129–51.CrossRefGoogle Scholar
  73. 73.
    Cremer-Bartels G, Krause K, Küchle HJ. Influence of low magnetic-field-strength variations on the retina and pineal gland of quail and humans. Graefes Arch Clin Exp Ophthalmol. 1983;220(5):248–52.CrossRefPubMedGoogle Scholar
  74. 74.
    Welker HA, Semm P, Willig RP, Commentz JC, Wiltschko W, Vollrath L. Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res. 1983;50(2):426–32.PubMedGoogle Scholar
  75. 75.
    Wilson BW, Stevens RG, Anderson LE. Neuroendocrine mediated effects of electromagnetic-field exposure. Possible role of the pineal gland. Life Sci. 1989;45(24):1319–32.CrossRefPubMedGoogle Scholar
  76. 76.
    Council NR. Possible health effects of exposure to residential electric and magnetic fields. Washington D.C.: National Academies Press; 1997.Google Scholar
  77. 77.
    Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004;43(4):447–68.CrossRefPubMedGoogle Scholar
  78. 78.
    Birkenfeld J, De Castro A, Marcos S. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses. Investig Ophthalmol Vis Sci. 2014;55(4):2599–607.CrossRefGoogle Scholar
  79. 79.
    Funk RHW, Thomas Monsees NO. Electromagnetic effects – from cell biology to medicine Richard. Prog Histochem Cytochem. 2009;43:177–264.CrossRefPubMedGoogle Scholar
  80. 80.
    Whissell PD, Persinger MA. Emerging synergisms between drugs and physiologically-patterned weak magnetic fields: implications for neuropharmacology and the human population in the twenty-first century. Curr Neuropharmacol. 2007;5:278–88.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lohmann KJ. Protein complexes: a candidate magnetoreceptor. Nat Mater [Internet]. 2016;15(2):136–8. Available from:
  82. 82.
    Thoss F, Bartsch B, Tellschaft D, Thoss M. The light sensitivity of the human visual system depends on the direction of view. J Comp Physiol A. 2002;188(3):235–7.CrossRefGoogle Scholar
  83. 83.
    Foley LE, Gegear RJ, Reppert SM. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun [Internet]. 2011;2(May):356. Available from:
  84. 84.
    Ritz T, Adem S, Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys J [Internet]. 2000;78(2):707–18. Available from: Scholar
  85. 85.
    Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta. 2007;225(3):615–24.CrossRefPubMedGoogle Scholar
  86. 86.
    Worster S, Mouritsen H, Hore PJ. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J R Soc Interface. 2017;14:0405.CrossRefGoogle Scholar
  87. 87.
    Schwarze S, Schneider N-L, Reichl T, et al. Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front Behav Neurosci [Internet]. 2016;10(March):1–13. Available from: Scholar
  88. 88.
    Mouritsen H, Janssen-Bienhold U, Liedvogel M, et al. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci [Internet]. 2004;101(39):14294–9. Available from:
  89. 89.
    Thoss F, Bartsch B. The human visual threshold depends on direction and strength of a weak magnetic field. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003;189(10):777–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Phillips JB, Muheim R, Jorge PE. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J Exp Biol [Internet]. 2010;213(19):3247–55. Available from: Scholar
  91. 91.
    Kirschvink JL, Gould JL. Biogenic manetite as a basis for magnetic field detection in animals. Biosystems. 1981;13:181–201.CrossRefPubMedGoogle Scholar
  92. 92.
    Duret G, Polali S, Anderson ED, et al. Magnetic entropy as a gating mechanism for magnetogenetic Ion channels. bioRxiv [Internet]. 2017:148379. Available from:
  93. 93.
    Teng J, Loukin SH, Anishkin A, Kung C. L596–W733 bond between the start of the S4–S5 linker and the TRP box stabilizes the closed state of TRPV4 channel. Proc Natl Acad Sci [Internet]. 2015;112(11):3386–91. Available from:
  94. 94.
    Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys [Internet]. 1994;101(5):4177–89. Available from: Scholar
  95. 95.
    Clites BL, Pierce JT. Identifying cellular and molecular mechanisms for magnetosensation. Annu Rev Neurosci. 2017;40:231–52.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Walker MM. A model for encoding of magnetic field intensity by magnetite-based magnetoreceptor cells. J Theor Biol. 2008;250(1):85–91.CrossRefPubMedGoogle Scholar
  97. 97.
    Dunlop DJ. Magnetite: behavior near the single-domain threshold. Science. 1972;176(4030):41–3.CrossRefPubMedGoogle Scholar
  98. 98.
    Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nat Rev Microbiol [Internet]. 2004;2(3):217–30. Available from:
  99. 99.
    Corey DP, Howard J. Models for ion channel gating with compliant states. Biophys J Vol. 1994;66(April):1254–7.CrossRefGoogle Scholar
  100. 100.
    Qin S, Yin H, Yang C, et al. A magnetic protein biocompass. Nat Mater [Internet]. 2016;15(2):217–26. Available from:
  101. 101.
    Pang K, You H, Chen Y, et al. MagR alone is insufficient to confer cellular calcium responses to magnetic stimulation. Front Neural Circuits [Internet]. 2017;11(March):1–13. Available from: Scholar
  102. 102.
    Wang Y, Chen J, Zhu F, Hong Y. Identification of medaka magnetoreceptor and cryptochromes. Sci China Life Sci. 2017;60(3):271–8.CrossRefPubMedGoogle Scholar
  103. 103.
    Stanley SA, Sauer J, Kane RS, Dordick JS, Friedman JM. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med [Internet]. 2014;21(1):92–8. Available from:
  104. 104.
    Tan DX, Zheng X, Kong J, et al. Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int J Mol Sci. 2014;15(9):15858–90.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Meister M. Physical limits to magnetogenetics. Elife. 2016;5(AUGUST):1–14.Google Scholar
  106. 106.
    Schulten K. Magnetic field effects in chemistry and biology. Festkörperprobleme. 1982;XXII:61–82.Google Scholar
  107. 107.
    Yoshii T, Ahmad M, Helfrich-Förster C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 2009;7(4):0813–9.CrossRefGoogle Scholar
  108. 108.
    Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature [Internet]. 2004;429(6988):177–80. Available from:
  109. 109.
    Maeda K, Henbest KB, Cintolesi F, et al. Chemical compass model of avian magnetoreception. Nature [Internet]. 2008;453(7193):387–90. Available from:
  110. 110.
    Jacobson JI, Yamanashi WS. An initial physical mechanism in the treatment of neurologic disorders with externally applied pico Tesla magnetic fields. Neurol Res. 1995;17(2):144–8.CrossRefPubMedGoogle Scholar
  111. 111.
    Persinger MA. A potential multiple resonance mechanism by which weak magnetic fields affect molecules and medical problems: the example of melatonin and experimental “multiple sclerosis”. Med Hypotheses. 2006;66(4):811–5.CrossRefPubMedGoogle Scholar
  112. 112.
    Jacobson JI. Pineal-hypothalamic tract mediation of picotesla magnetic fields in the treatment of neurological disorders. Panminerva Med. 1994;36(4):201–5.PubMedGoogle Scholar
  113. 113.
    Zablotskii V, Polyakova T, Lunov O, Dejneka A. How a high-gradient magnetic field could affect cell life. Sci Rep [Internet]. 2016;6(37407):1–13. Available from: Scholar
  114. 114.
    Maeda K, Robinson AJ, Henbest KB, et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci [Internet]. 2012;109(13):4774–9. Available from:
  115. 115.
    Fedele G, Edwards MD, Bhutani S, et al. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 2014;10(12):e1004804.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Chernouss S, Vinogradov A. Geophysical hazard for human health in the circumpolar Auroral Belt: evidence of a relationship between heart rate variation and electromagnetic disturbances. Nat Hazards. 2001;23:121–35.CrossRefGoogle Scholar
  117. 117.
    Carrubba S, Frilot C II, Chesson AL Jr, Marino AA. Evidence of a nonlinear human magnetic sense. Neuroscience. 2007;144:356–67.CrossRefPubMedGoogle Scholar
  118. 118.
    Binhi VN, Prato FS. Biological effects of the hypomagnetic field: an analytical review of experiments and theories [Internet]. PLoS ONE. 2017;12:1–51. Available from:
  119. 119.
    Otsuka K, Cornélissen G, Weydahl A, et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed Pharmacother. 2000;55:s51–6.CrossRefGoogle Scholar
  120. 120.
    Petrova E, Dimitrova S, Angelov I. Solar and geomagnetic activity effects on heart rate variability. Nat Hazards. 2013;69:25–37.CrossRefGoogle Scholar
  121. 121.
    Cornélissen G, Halberg F, Breus T, et al. Non-photic solar associations of heart rate variability and myocardial infarction. J Atmos Sol Terr Phys. 2002;64(5):707–20.CrossRefGoogle Scholar
  122. 122.
    Watanabe Y, Cornélissen G, Halberg F, Otsuka K, Ohkawa S-I. Associations by signatures and coherences between the human circulation and helio-and geomagnetic activity. Biomed Pharmacother. 2000;55:s76–83.CrossRefGoogle Scholar
  123. 123.
    Haraldsson E, Gissurarson LR. Does geomagnetic activity effect extrasensory perception? Pers Individ Differ. 1987;8(5):745–7.CrossRefGoogle Scholar
  124. 124.
    Arango MA, Peringer MA. 1988-Arango-and-Persinger-PMS-Geophysical-variables-and-behavior--LII-decreased-geomagnetic-activity-and-spontaneous-telepathic-experi.pdf. Percept Mot Skills. 1988;67:907–10.CrossRefGoogle Scholar
  125. 125.
    Persinger MA. Spontaneous telepathic experiences from Phantasms of the living and low global geomagnetic activity. J Am Soc Psych Res. 1986;81:23–36.Google Scholar
  126. 126.
    Schaut GB, Persinger MA. Geophysical variables and behavior: XXXI. Global geomagnetic activity during spontaneous paranormal experiences: a replication. Percept Mot Skills. 1985;61(2):412–4.CrossRefGoogle Scholar
  127. 127.
    Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, et al. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci. 2014;15(12):23448–500.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Arendt J, Skene DJ. Melatonin as a chronobiotic. Indian J Biochem Biophys. 2005;45(5):25–39.Google Scholar
  129. 129.
    Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell. 1997;90(6):1003–11.CrossRefPubMedGoogle Scholar
  130. 130.
    Czeisler CA, Duffy JF, Shanahan TL, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science [Internet]. 1999;284(5423):2177–81. Available from:

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurosurgery, Children’s Hospital Medical CentreTehran University of Medical SciencesTehranIran
  2. 2.MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN)TehranIran
  3. 3.Department of PhysicsShahid Beheshti UniversityTehranIran

Personalised recommendations