Advertisement

The Building Blocks of Intelligence

  • Andrew Y. GliksonEmail author
Chapter
  • 192 Downloads

Abstract

The ancient Greek philosopher Anaximander postulated the development of life from non-life and the evolutionary descent of man from animal. Ever since the development of the theory of evolution by Darwin (1859) and Wallace in 1858, the theory stands up as the landmark of fundamental knowledge in life sciences, with a common ancestor, genetic selection and biological diversity as the cornerstone of biological science, yet essential questions remain. Charles Darwin and Alfred Wallace’s theory of evolution by natural selection, which dominates biological science, explains the most part of biological evolution, yet leaves many questions unanswered regarding the origin of complex living systems and observations of directionality and sense of purpose. The fundamental question is how can an assemblage of atoms—carbon, oxygen, hydrogen, nitrogen and sulfur—evolving over time through mutations and natural selection, culminate in the brain and in consciousness—a consciousness capable of resolving the basic laws of physics, the atomic and subatomic structure of matter and astronomy. The likelihood of an emergence of life is intimately related to initial cosmological conditions and the laws and constants of physics, indicating whether life has sprang by chance or is destined to emerge due to unknown and possibly unknowable principles. In terms of the second law of thermodynamics the phenomenon of life depends on differential trajectories among atoms, where entropy increase in closed systems but can decrease in open systems that absorb energy. Inherent in these questions is the contrast between the Selfish Gene hypothesis of Dawkins and theories that emphasize the interconnectedness and the emergent properties of the complex cells, where Aristotle’s dictum the whole is greater than the sum of the parts assumes key significance. Inherent in the question is inherent in the contrast between the “Selfish Gene” hypothesis of Dawkins (2006) and theories that emphasize the interconnectedness and the emergent properties of the complex cells, where the whole is greater than the sum of the parts. Since organisms reflect and respond to the environment in which they have evolved, the study of early habitats is closely relevant to life’s origin.

Keywords

Evolution Directional Brain Consciousness Living systems 

References

  1. Altman S, Cech TR (1989) The nobel prize in chemistry 1989. https://www.nobelprize.org/prizes/chemistry/1989/summary/
  2. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448):1095–1108. http://science.sciencemag.org/content/208/4448/1095
  3. Arrhenius S (1905) Worlds in the making. Harper, London. https://catalog.hathitrust.org/Record/000205968
  4. Awramik SM (1992) The oldest records of photosynthesis. Photosynth Res 33:75–89. Kluwer Academic Publishers. http://www.geol.ucsb.edu/faculty/awramik/pubs/AWRA9275.pdf
  5. Badro J, Walter M (2015) The early earth: accretion and differentiation. American Geophysical Union Geophysical Monograph Series. http://onlinelibrary.wiley.com/book/10.1002/9781118860359
  6. BBM (1995) Fractal evolution. Leading Edge Research Group. http://www.fractal.org/Bewustzijns-Besturings-Model/Fractal-Evolution.htm
  7. Becker L, Poreda RJ, Bunch TE (2000) Fullerenes: an extraterrestrial carbon carrier phase for noble gases. Proc Nat Acad Sci 97(7):2979–2983. http://www.pnas.org/content/97/7/2979
  8. Cairns-Smith AG (1987) Genetic takeover: and the mineral origins of life. 488 pp. https://www.amazon.com/Genetic-Takeover-Mineral-Origins-Life/dp/0521346827
  9. Callahan MP et al (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci USA. http://www.pnas.org/content/early/2011/08/10/1106493108
  10. Chaitin GJ (2011) A mathematical theory of evolution and biological creativity. IBM Research. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.5284&rep=rep1&type=pdf
  11. Chyba CF (1990) Extraterrestrial amino acids and terrestrial life. Nature 348:113–114. https://www.nature.com/articles/348113a0
  12. Cloud PE (1968) Atmospheric and hydrospheric evolution on the primitive Earth. Science 3829:729–736 http://science.sciencemag.org/content/160/3829/729
  13. Cooper GM (2000) The origin and evolution of cells. In: The cell, 2nd edn. A molecular approach. Boston University. https://www.ncbi.nlm.nih.gov/books/NBK9841/
  14. Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol 12:138–63Google Scholar
  15. Cronin JR, Pizzarello S, Cruikshank DP (1988) Meteorites and the early solar system. University of Arizona Press, Tucson, pp 819–857. http://adsabs.harvard.edu/abs/1988mess.book..819C
  16. Cuvier G (1812) Recherches sur les ossemens fossiles de quadrupèdes, où l’on rétablit les caractères de plusieurs espèces d’animaux que les révolutions du globe paraissent avoir détruites. Deterville, Paris. https://www.biodiversitylibrary.org/bibliography/60807#/summary
  17. Darwin C (1859) On the origin of species. Text of 1st edition prepared by van Wyhe, J., & Asscher, S. http://darwin-online.org.uk/content/frameset?itemID=F373&viewtype=text&pageseq=1
  18. Darwin Charles On the origin of species by means of natural selection. http://darwin-online.org.uk/converted/pdf/1861_OriginNY_F382.pdf
  19. Davies P (2000a) The fifth miracle: the search for the origin and meaning of life. http://www.simonandschuster.com/books/The-Fifth-Miracle/Paul-Davies/9780684863092
  20. Davies P (2000b) Biological determinism, information theory, and the origin of life. http://www.metanexus.net/essay/biological-determinism-information-theory-and-origin-life
  21. Davies PC, Lineweaver CH (2005) Finding a second sample of life on earth. Astrobiology 5(2):154–163. https://www.ncbi.nlm.nih.gov/pubmed/15815166
  22. Dawkins R (2006) The selfish gene: 30th anniversary edition. Oxford University Press, 384 pp. https://www.bookdepository.com/Selfish-Gene-Richard-Dawkins/9780199291151
  23. Day T (2011) Computability, Gödel’s incompleteness theorem, and an inherent limit on the predictability of evolution. Interface 9(69). http://rsif.royalsocietypublishing.org/content/9/69/624
  24. de Duve C (1995) Vital dust. Basic Books, New York. https://www.amazon.com/Vital-Dust-Origin-Evolution-Earth/dp/0465090451
  25. Denton M (1986) Evolution: a theory in crisis. https://alta3b.files.wordpress.com/2016/09/crisis1.pdf
  26. Eigen M, Schuster P (1979a) The hyper-cycle: the principle of natural self-organization. Springer, Berlin. https://www.springer.com/gp/book/9783540092933
  27. Eigen M, Schuster P (1979b) The hypercycle: a principle of natural self-organization. Springer. https://www.springer.com/us/book/9783540092933
  28. Ellis G (2012) Recognizing top-down causation. https://arxiv.org/ftp/arxiv/papers/1212/1212.2275.pdf
  29. Ellis G, Solms M (2017) Beyond evolutionary psychology. Dymocks. ISBN 9781107053687Google Scholar
  30. England JL (2013) Statistical physics of self-replication. J Chem Phys 139. https://www.englandlab.com/uploads/7/8/0/3/7803054/2013jcpsrep.pdf
  31. Evans TM, Sing DK, Lupu R (2017) An ultrahot gas-giant exoplanet with a stratosphere. Nature 548:58–61. http://www.nature.com/articles/nature23266
  32. Farley KA et al (1998) Geochemical evidence for a comet shower in the late Eocene. Science 280(5367):1250–1253. http://science.sciencemag.org/content/280/5367/1250.full
  33. Fox SW, Dose K (1972) Molecular evolution and the origin of life. Contribution No. 225 of the Institute for Molecular and Cellular Evolution. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.530.2369&rep=rep1&type=pdf
  34. Gladman B et al (2005) Impact seeding and reseeding in the inner solar system. Astrobiology 5(4):483–496. https://www.ncbi.nlm.nih.gov/pubmed/16078867
  35. Glavin D et al (1999) Amino acids in the Martian meteorite Nakhla. Proc Am Acad Sci 96(16):8835–8838. http://www.pnas.org/content/96/16/8835
  36. Gilbert W (1986) The RNA world. Nat 319(618)Google Scholar
  37. Gould SJ (1990) Wonderful life: the Burgess Shale and the nature of history. Norton, 347 pp http://s-f-walker.org.uk/pubsebooks/pdfs/Stephen_Jay_Gould_Wonderful_Life_The_Burgess.pdf
  38. Haldane JBS (1929) The origin of life. https://www.uv.es/~orilife/textos/Haldane.pdf
  39. Harada K, Fox SW (1964) Thermal synthesis of natural amino-acids from a postulated primitive terrestrial atmosphere. Nature 201:335–336. https://www.nature.com/articles/201335a0
  40. Heymann D (1994) Search for extractable fullerenes in clays from the Cretaceous/Tertiary boundary of the Woodside Creek and Flaxbourne River sites, New Zealand. Geochim Cosmochim Acta 58:3531–3534. https://www.sciencedirect.com/science/article/pii/0016703794901058
  41. Heymann D, Wolbach WS (2006) Fullerenes in the Cretaceous-Tertiary boundary. In: Natural fullerenes and related structures of elemental carbon. Springer, pp 191–212. https://link.springer.com/chapter/10.1007/1-4020-4135-7_9
  42. Hoyle F et al (1953) Triple alpha process. Phys Rev 92(649). http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/helfus.html#c1astr.gsu.ed
  43. Hoyle F (1983) The intelligent universe. Michael Joseph, London, p 17. http://wasdarwinwrong.com/kortho47.htm
  44. Hoyle F, Wickramasinghe NC (1977) Polysaccharides and infrared spectra of galactic sources. http://adsabs.harvard.edu/abs/1977Natur.268..610H
  45. Hoyle F, Wickramasinghe NC (1986) The case for life as a cosmic phenomenon. Nature 322:509–511 https://www.nature.com/articles/322509a0
  46. Hurowitz JA et al (2017) Redox stratification of an ancient lake in Gale crater, Mars. Sci 356(6341). http://science.sciencemag.org/content/356/6341/eaah6849
  47. Kaufmann SA (1993) The origins of order: self-organization and selection in evolution, 1st edn. https://www.amazon.com/Origins-Order-Self-Organization-Selection-Evolution/dp/0195079515
  48. Kaufmann SA (1995) At home in the universe. Oxford University Press, Oxford. https://www.amazon.com/At-Home-Universe-Self-Organization-Complexity/dp/0195111303
  49. Kirschvink JL, Weiss BP (2002) Mars, panspermia and the origin of life: where did it all begin? American Geophysical Union Meeting. https://palaeo-electronica.org/2001_2/editor/mars.htm
  50. Knauth P (2004) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. https://asu.pure.elsevier.com/en/publications/temperature-and-salinity-history-of-the-precambrian-ocean-implica-2
  51. Koga T, Naraoka H (2017) A new family of extraterrestrial amino acids in the Murchison meteorite. Sci Rep 7(636). https://www.nature.com/articles/s41598-017-00693-9
  52. Mandelbrot B (1982) The fractal geometry of nature. Times Books. p 486, https://www.amazon.com/Fractal-Geometry-Nature-Benoit-Mandelbrot/dp/0716711869
  53. Marcus PS (2013) Three-dimensional vortices generated by self-replication in stably stratified rotating shear flows. Phys Rev Lett 111:084501 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.084501
  54. Martin W et al (2008) Hydrothermal vents and the origin of life. Microbiol Rev 6:804–805. http://cips.berkeley.edu/events/planets-life-seminar/martin.pdf
  55. Martin-Delgado MA (2012) On quantum effects in a theory of biological evolution. Sci Rep 2(302). https://www.nature.com/articles/srep00302
  56. Mayr E (1982) The growth of biological thought. Harvard University Press. ISBN 0-674-36446-5. http://systematicbiology.co.nf/Mayr_GrowthOfBiologicalThought.pdf
  57. McKee M (2009) Found: first amino acid on a comet. New Sci 17. https://www.newscientist.com/article/dn17628-found-first-amino-acid-on-a-comet/
  58. Miller S, Urey HC (1953) The Miller-Urey experiment. https://www.windows2universe.org/earth/Life/miller_urey.htm
  59. Mileikowsky C et al (2000) Natural transfer of viable microbes in space. Icarus 145(2):391–427. https://www.ncbi.nlm.nih.gov/pubmed/11543506
  60. Mojzsis SJ et al (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178 http://www.geology.wisc.edu/~valley/zircons/Wilde2001Nature.pdf
  61. Norman J (2018) History of information.com. Mandelbrot’s the fractal geometry of nature (1975–1982). http://www.historyofinformation.com/expanded.php?id=1151
  62. Pidgeon RT (2014) Zircon radiation damage ages. Chem Geol 367:13–22. https://www.sciencedirect.com/science/article/pii/S0009254113005871
  63. Pidgeon RT, Nemchin AA, Cliff J (2013) Interaction of weathering solutions with oxygen and U–Pb isotopic systems of radiation-damaged zircon from an Archean granite, Darling Range Batholith, Western Australia. Contrib Mineral Petrol 166:511–523. https://link.springer.com/article/10.1007/s00410-013-0888-z
  64. Prigogine I (1977a) Time structure and fluctuations. Nobel Lecture. https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1977/prigogine-lecture.pdf
  65. Prigogine I (1977b) Time structure and fluctuations. Nobel Lecture. https://www.geni.com/people/Ilya-Prigogine-Nobel-Prize-in-Chemistry-1977/6000000014200399780
  66. Pross A (2004) Origins of life and evolution of the biosphere. 34:307–321. https://link.springer.com/article/10.1023/B:ORIG.0000016446.51012.bc
  67. Rees M (2017) Our cosmic habitat. Princeton University Press, New Jersey. https://press.princeton.edu/titles/11154.html
  68. Russell MJ, Hall AJ (2006) The onset and early evolution of life. Geol Soc Am Mem 198. https://www.gla.ac.uk/projects/originoflife/html/2001/pdf_files/Russell%20&%20Hall%20GSA%20Mem%20198%20final.pdf
  69. Ryder G (1991) Accretion and bombardment in the Earth–Moon system: the lunar record. Lunar Planet Sci Instit Contrib 746:42–43. http://adsabs.harvard.edu/full/1990LPICo.746…42R
  70. Schopf JW, Walter MR, Ruiji C (2007) Preface: earliest evidence of life on earth. Precambr Res 158:139–140. https://www.aca.unsw.edu.au/sites/default/files/publications/Schopf%2C%20Walter%2C%20Ruiji%20%202007.pdf
  71. Schrödinger E (1944) What is life? The physical aspect of the living cell. Based on Lectures delivered under the auspices of the Institute at Trinity College, Dublin, in February 1943. Cambridge University Press, Cambridge. https://hagstromerlibrary.ki.se/books/16176
  72. Stanley MS (2016) Estimates of the magnitudes of major marine mass extinctions in earth history. Proc Nat Acad Sci 113(42):E6325–E6334 http://www.pnas.org/content/113/42/E6325.abstract
  73. Stevenson DJ (1987) Origin of the moon—the collision hypothesis. Ann Rev Earth Planet Sci 15:271–315. https://websites.pmc.ucsc.edu/~pkoch/EART_206/09-0122/Stevenson%2087%20AREPS%2015-271.pdf
  74. Uwins PJR et al (1998) Novel nano-organisms from Australian sandstones. Am Mineral 83:1541–1550CrossRefGoogle Scholar
  75. Valley JW et al (2000) A cool early Earth. Geology 30:351–354. https://pdfs.semanticscholar.org/f5ef/422d4abc265a5283ba4d3eab2795baa8c573.pdf
  76. Van Kranendonk MJ, Bennett V, Hoffmann E (2018) Earth’s oldest rocks, 2nd edn. https://www.elsevier.com/books/earths-oldest-rocks/van-kranendonk/978-0-444-63901-1
  77. Von Neumann J (1966) The theory of self-reproducing automata. Burks A (ed). University of Illinois Press, Urbana. https://archive.org/details/theoryofselfrepr00vonn_0
  78. Wall M (2014) Bold prediction: intelligent alien life could be found by 2040. https://www.space.com/24622-intelligent-alien-life-detection-2040.html
  79. Weale EW (2015) Patrick Matthew’s law of natural selection. Linn Soc Biol J pp. 1–7. Series 3(18):30–32. http://www.blc.arizona.edu/courses/schaffer/249/Before%20Darwin%20-%20New/Weale-Matthew’s%20Law%20of%20Natural%20Selection.pdf
  80. Wilde SA et al (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nat, vol 409. http://www.nature.com
  81. Woese CR (2002) On the evolution of cells. Proc Nat Acad Sci 99(13):8742–8747. http://www.pnas.org/content/99/13/8742.full
  82. Wolchover N (2014) A new physics theory of life. Quanta Mag. https://www.quantamagazine.org/a-new-thermodynamics-theory-of-the-origin-of-life-20140122/
  83. Zeravcic Z, Brenner MP (2014) Self-replicating colloidal clusters. PNAS 111(5):1748–1753. http://www.pnas.org/content/111/5/1748
  84. Zhao M, Bada JL (1989) Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark. Nature 339:463–465CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research School of Earth ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations