Abstract
Wireless networks require fast-acting, effective and efficient security mechanisms able to tackle unpredictable, dynamic, and stealthy attacks. In recent years, we have seen the steadfast rise of technologies based on machine learning and software-defined radios, which provide the necessary tools to address existing and future security threats without the need of direct human-in-the-loop intervention. On the other hand, these techniques have been so far used in an ad hoc fashion, without any tight interaction between the attack detection and mitigation phases. In this chapter, we propose and discuss a Learning-based Wireless Security (LeWiS) framework that provides a closed-loop approach to the problem of cross-layer wireless security. Along with discussing the LeWiS framework, we also survey recent advances in cross-layer wireless security.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
The provided summary is not intended to be exhaustive, and a more detailed taxonomy of defense strategies can be found in [13, 96]. Furthermore, the same defence strategy (e.g., authentication, coding) can be implemented in different ways, and with possibly distinct outcomes, at multiple layers of the protocol stack.
References
A.A. Aburomman, M.B.I. Reaz, A novel svm-knn-pso ensemble method for intrusion detection system. Appl. Soft Comput. 38, 360–372 (2016)
A.A. Ahmed, N.F. Fisal, Secure real-time routing protocol with load distribution in wireless sensor networks. Secur. Commun. Netw. 4(8), 839–869 (2011)
L. Akoglu, C. Faloutsos, Anomaly, event, and fraud detection in large network datasets, in Proceeding of the ACM International Conference on Web Search and Data Mining (WSDM) (2013), pp. 773–774
I.F. Akyildiz, X. Wang, A survey on wireless mesh networks. IEEE Commun. Mag. 43(9), S23–S30 (2005)
M.A. Alsheikh, S. Lin, D. Niyato, H.P. Tan, Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun. Surv. Tutorials 16(4), 1996–2018 (2014)
R.A.R. Ashfaq, X.Z. Wang, J.Z. Huang, H. Abbas, Y.L. He, Fuzziness based semi-supervised learning approach for intrusion detection system. Inf. Sci. 378, 484–497 (2017). https://doi.org/10.1016/j.ins.2016.04.019. http://www.sciencedirect.com/science/article/pii/S0020025516302547
D. Balfanz, D.K. Smetters, P. Stewart, H.C. Wong, Talking to strangers: authentication in ad-hoc wireless networks, in NDSS (2002)
D.P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1 (Athena Scientific, Belmont, MA, 1995)
A.L. Buczak, E. Guven, A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutorials 18(2), 1153–1176 (2016)
L. Busoniu, R. Babuska, B. De Schutter, A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. C 38(2), 156–172 (2008)
L. Buşoniu, B. De Schutter, R. Babuška, Approximate dynamic programming and reinforcement learning, in Interactive Collaborative Information Systems (Springer, New York, 2010), pp. 3–44
A. Cassola, W.K. Robertson, E. Kirda, G. Noubir, A practical, targeted, and stealthy attack against wpa enterprise authentication, in NDSS (2013)
X. Chen, K. Makki, K. Yen, N. Pissinou, Sensor network security: a survey. IEEE Commun. Surv. Tutorials 11(2), 52–73 (2009)
M. Chiang, Balancing transport and physical layers in wireless multihop networks: jointly optimal congestion control and power control. IEEE J. Sel. Areas Commun. 23(1), 104–116 (2005)
T.C. Clancy, Efficient ofdm denial: pilot jamming and pilot nulling, in IEEE International Conference on Communications (ICC) (IEEE, Kyoto, 2011), pp. 1–5
C. Clancy, J. Hecker, E. Stuntebeck, T. O’Shea, Applications of machine learning to cognitive radio networks. IEEE Wirel. Commun. 14(4), 47–52 (2007)
S. Convery, Network Security Architectures (Pearson Education, Chennai, 2004)
M. Crawford, T.M. Khoshgoftaar, J.D. Prusa, A.N. Richter, H.A. Najada, Survey of review spam detection using machine learning techniques. J. Big Data 2(1), 2–23 (2015)
M.L. Das, Two-factor user authentication in wireless sensor networks. IEEE Trans. Wirel. Commun. 8(3), 1086–1090 (2009)
T.R. Dean, A.J. Goldsmith, Physical-layer cryptography through massive mimo. IEEE Trans. Inf. Theory 63(8), 5419–5436 (2017). https://doi.org/10.1109/TIT.2017.2715187
L. Deng, G. Hinton, B. Kingsbury, New types of deep neural network learning for speech recognition and related applications: an overview, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013), pp. 8599–8603
L. Deng, D. Yu et al., Deep learning: methods and applications. Found. Trends Signal Process. 7(3–4), 197–387 (2014)
L. Ding, T. Melodia, S. Batalama, J. Matyjas, M. Medley, Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Trans. Veh. Technol. 59, 1969–1979 (2010)
S. D’Oro, L. Galluccio, G. Morabito, S. Palazzo, Efficiency analysis of jamming-based countermeasures against malicious timing channel in tactical communications, in 2013 IEEE International Conference on Communications (ICC) (2013), pp. 4020–4024. https://doi.org/10.1109/ICC.2013.6655188
S. D’Oro, L. Galluccio, G. Morabito, S. Palazzo, L. Chen, F. Martignon, Defeating jamming with the power of silence: a game-theoretic analysis. IEEE Trans. Wirel. Commun. 14(5), 2337–2352 (2015)
S. D’Oro, E. Ekici, S. Palazzo, Optimal power allocation and scheduling under jamming attacks. IEEE/ACM Trans. Netw. 25(3), 1310–1323 (2017). https://doi.org/10.1109/TNET.2016.2622002
R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley, New York, 2000)
E.F. Flushing, J. Nagi, G.A. Di Caro, A mobility-assisted protocol for supervised learning of link quality estimates in wireless networks, in International Conference on Computing, Networking and Communications (ICNC) (IEEE, Maui, 2012), pp. 137–143
A.B. Gershman, U. Nickel, J.F. Bohme, Adaptive beamforming algorithms with robustness against jammer motion. IEEE Trans. Signal Process. 45(7), 1878–1885 (1997)
P.K. Gopala, L. Lai, H. El Gamal, On the secrecy capacity of fading channels. IEEE Trans. Inf. Theory 54(10), 4687–4698 (2008)
K. Hasan, S. Shetty, T. Oyedare, Cross layer attacks on gsm mobile networks using software defined radios, in 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC) (2017), pp. 357–360. https://doi.org/10.1109/CCNC.2017.7983134
W. Hu, W. Hu, S. Maybank, Adaboost-based algorithm for network intrusion detection. IEEE Trans. Syst. Man Cybern. B Cybern. 38(2), 577–583 (2008)
J. Huang, A.L. Swindlehurst, Cooperative jamming for secure communications in mimo relay networks. IEEE Trans. Signal Process. 59(10), 4871–4884 (2011)
J.Y. Huang, I.E. Liao, Y.F. Chung, K.T. Chen, Shielding wireless sensor network using Markovian intrusion detection system with attack pattern mining. Inf. Sci. 231, 32–44 (2013). https://doi.org/10.1016/j.ins.2011.03.014. http://www.sciencedirect.com/science/article/pii/S0020025511001435. Data Mining for Information Security
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: convolutional architecture for fast feature embedding, in Proceedings of the ACM International Conference on Multimedia (2014), pp. 675–678
I. Jirón, I. Soto, R. Carrasco, N. Becerra, Hyperelliptic curves encryption combined with block codes for Gaussian channel. Int. J. Commun. Syst. 19(7), 809–830 (2006)
J.F.C. Joseph, B.S. Lee, A. Das, B.C. Seet, Cross-layer detection of sinking behavior in wireless ad hoc networks using svm and fda. IEEE Trans. Dependable Secure Comput. 8(2), 233–245 (2011)
L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)
C. Karlof, D. Wagner, Secure routing in wireless sensor networks: attacks and countermeasures. Ad Hoc Netw. 1(2–3), 293–315 (2003)
C. Karlof, N. Sastry, D. Wagner, Tinysec: a link layer security architecture for wireless sensor networks, in Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (ACM, New York, 2004), pp. 162–175
Kdd cup 1999 data (1999). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
R.A. Kemmerer, G. Vigna, Intrusion detection: a brief history and overview. Computer 35(4), 27–30 (2002). https://doi.org/10.1109/MC.2002.1012428
D. Kreutz, F.M.W. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015). https://doi.org/10.1109/JPROC.2014.2371999
I. Krikidis, J.S. Thompson, S. McLaughlin, Relay selection for secure cooperative networks with jamming. IEEE Trans. Wirel. Commun. 8(10), 5003–5011 (2009)
P. Laskov, P. Düssel, C. Schäfer, K. Rieck, Learning intrusion detection: supervised or unsupervised?, in Image Analysis and Processing – ICIAP 2005, ed. by F. Roli, S. Vitulano (Springer, Berlin/Heidelberg, 2005), pp. 50–57
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436 (2015)
K. Lee, J. Kim, K.H. Kwon, Y. Han, S. Kim, Ddos attack detection method using cluster analysis. Exp. Syst. Appl. 34(3), 1659–1665 (2008)
Y. Li, L. Guo, An active learning based tcm-knn algorithm for supervised network intrusion detection. Comput. Secur. 26(7), 459–467 (2007)
M. Li, I. Koutsopoulos, R. Poovendran, Optimal jamming attacks and network defense policies in wireless sensor networks, in 26th IEEE International Conference on Computer Communications. INFOCOM 2007 (IEEE, Alaska, 2007), pp. 1307–1315
W. Li, P. Yi, Y. Wu, L. Pan, J. Li, A new intrusion detection system based on knn classification algorithm in wireless sensor network. J. Elect. Comput. Eng. 2014, Article ID 240217 (2014)
X. Lin, N.B. Shroff, R. Srikant, A tutorial on cross-layer optimization in wireless networks. IEEE J. Sel. Areas Commun. 24, 1452–1463 (2006)
W.C. Lin, S.W. Ke, C.F. Tsai, Cann: an intrusion detection system based on combining cluster centers and nearest neighbors. Knowl. Based Syst. 78, 13–21 (2015)
G. Liu, Z. Yi, S. Yang, A hierarchical intrusion detection model based on the pca neural networks. Neurocomputing 70(7), 1561–1568 (2007). https://doi.org/10.1016/j.neucom.2006.10.146. http://www.sciencedirect.com/science/article/pii/S0925231206004644. Advances in Computational Intelligence and Learning
S. Liu, Y. Hong, E. Viterbo, Unshared secret key cryptography. IEEE Trans. Wirel. Commun. 13(12), 6670–6683 (2014)
J. Lubacz, W. Mazurczyk, K. Szczypiorski, Principles and overview of network steganography. IEEE Commun. Mag. 52(5), 225–229 (2014)
W. Mao, Modern Cryptography: Theory and Practice (Prentice Hall, Upper Saddle River, 2003)
D. Martins, H. Guyennet, Steganography in mac layers of 802.15. 4 protocol for securing wireless sensor networks, in 2010 International Conference on Multimedia Information Networking and Security (MINES) (IEEE, Nanjing, 2010), pp. 824–828
T. Melodia, H. Kulhandjian, L.C. Kuo, E. Demirors, Advances in Underwater Acoustic Networking (Wiley, New York, 2013), pp. 804–852. https://doi.org/10.1002/9781118511305.ch23. http://dx.doi.org/10.1002/9781118511305.ch23
R.F. Molanes, J.J. Rodríguez-Andina, J. Fariña, Performance characterization and design guidelines for efficient processor - fpga communication in cyclone v fpsocs. IEEE Trans. Ind. Electron. 65(5), 4368–4377 (2018). https://doi.org/10.1109/TIE.2017.2766581
L. Mucchi, L.S. Ronga, E. Del Re, A novel approach for physical layer cryptography in wireless networks. Wirel. Pers. Commun. 53(3), 329–347 (2010)
L. Mucchi, L.S. Ronga, E. Del Re, Physical layer cryptography and cognitive networks, in Trustworthy Internet (Springer, New York, 2011), pp. 75–91
A. Mukherjee, S.A.A. Fakoorian, J. Huang, A.L. Swindlehurst, Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun. Surv. Tutorials 16(3), 1550–1573 (2014)
M.D.V. Pena, J.J. Rodriguez-Andina, M. Manic, The internet of things: the role of reconfigurable platforms. IEEE Ind. Electron. Mag. 11(3), 6–19 (2017). https://doi.org/10.1109/MIE.2017.2724579
S. Pudlewski, N. Cen, Z. Guan, T. Melodia, Video transmission over lossy wireless networks: a cross-layer perspective. IEEE J. Sel. Top. Signal Process. 9, 6–22 (2015)
O. Puñal, I. Aktaş, C.J. Schnelke, G. Abidin, K. Wehrle, J. Gross, Machine learning-based jamming detection for ieee 802.11: design and experimental evaluation, in 2014 IEEE 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) (IEEE, Sydney, 2014), pp. 1–10
E. Rescorla, SSL and TLS: Designing and Building Secure Systems, vol. 1 (Addison-Wesley, Reading, 2001)
A. Saied, R.E. Overill, T. Radzik, Detection of known and unknown ddos attacks using artificial neural networks. Neurocomputing 172, 385–393 (2016)
A.L. Samuel, Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 44(1–2), 206–226 (2000)
K. Sanzgiri, B. Dahill, B.N. Levine, C. Shields, E.M. Belding-Royer, A secure routing protocol for ad hoc networks, in 10th IEEE International Conference on Network Protocols, 2002. Proceedings (IEEE, Paris, 2002), pp. 78–87
N. Sastry, D. Wagner, Security considerations for ieee 802.15. 4 networks, in Proceedings of the 3rd ACM workshop on Wireless Security (ACM, New York, 2004), pp. 32–42
C. Shahriar, S. Sodagari, T.C. Clancy, Performance of pilot jamming on mimo channels with imperfect synchronization, in 2012 IEEE International Conference on Communications (ICC), pp. 898–902 (IEEE, Ottawa, 2012)
S. Shamshirband, A. Patel, N.B. Anuar, M.L.M. Kiah, A. Abraham, Cooperative game theoretic approach using fuzzy q-learning for detecting and preventing intrusions in wireless sensor networks. Eng. Appl. Artif. Intell. 32, 228–241 (2014)
S.S.S. Sindhu, S. Geetha, A. Kannan, Decision tree based light weight intrusion detection using a wrapper approach. Exp. Syst. Appl. 39(1), 129–141 (2012). https://doi.org/10.1016/j.eswa.2011.06.013. http://www.sciencedirect.com/science/article/pii/S0957417411009080
K.J. Singh, D.S. Kapoor, Create your own internet of things: a survey of IoT platforms. IEEE Consum. Electron. Mag. 6(2), 57–68 (2017)
R. Sommer, V. Paxson, Outside the closed world: on using machine learning for network intrusion detection, in 2010 IEEE Symposium on Security and Privacy (2010), pp. 305–316
G. Stein, B. Chen, A.S. Wu, K.A. Hua, Decision tree classifier for network intrusion detection with ga-based feature selection, in Proceedings of the 43rd Annual Southeast Regional Conference - Volume 2, ACM-SE 43 (ACM, New York, 2005), pp. 136–141. https://doi.org/10.1145/1167253.1167288. http://doi.acm.org/10.1145/1167253.1167288
M. Strasser, B. Danev, S. Čapkun, Detection of reactive jamming in sensor networks. ACM Trans. Sens. Netw. 7(2), 16:1–16:29 (2010)
R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, vol. 1 (MIT Press, Cambridge, 1998)
K. Szczypiorski, Hiccups: hidden communication system for corrupted networks, in International Multi-Conference on Advanced Computer Systems (2003), pp. 31–40
A. Testolin, M. Zanforlin, M.D.F. De Grazia, D. Munaretto, A. Zanella, M. Zorzi, M. Zorzi, A machine learning approach to qoe-based video admission control and resource allocation in wireless systems, in 2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET) (IEEE, Piran, 2014), pp. 31–38
G. Thamilarasu, A. Balasubramanian, S. Mishra, R. Sridhar, A cross-layer based intrusion detection approach for wireless ad hoc networks, in Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems, Washington (2005)
A.D. Tijsma, M.M. Drugan, M.A. Wiering, Comparing exploration strategies for q-learning in random stochastic mazes, in 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016), pp. 1–8. https://doi.org/10.1109/SSCI.2016.7849366
O. Ureten, N. Serinken, Wireless security through rf fingerprinting. Can. J. Elect. Comput. Eng. 32(1), 27–33 (2007)
S. Vadlamani, B. Eksioglu, H. Medal, A. Nandi, Jamming attacks on wireless networks: a taxonomic survey. Int. J. Prod. Econ. 172, 76–94 (2016)
J.P. Walters, Z. Liang, W. Shi, V. Chaudhary, Wireless sensor network security: a survey, in Security in Distributed, Grid, Mobile, and Pervasive Computing, vol. 1 (Auerbach, Boston, 2007), p. 367
Y. Wang, M. Martonosi, L.S. Peh, Predicting link quality using supervised learning in wireless sensor networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 11(3), 71–83 (2007)
X. Wang, J.S. Wong, F. Stanley, S. Basu, Cross-layer based anomaly detection in wireless mesh networks, in Proceedings of International Symposium on Applications and the Internet, Bellevue (2009), pp. 9–15
S.S. Wang, K.Q. Yan, S.C. Wang, C.W. Liu, An integrated intrusion detection system for cluster-based wireless sensor networks. Exp. Syst. Appl. 38(12), 15234–15243 (2011)
X. Wang, M. Tao, J. Mo, Y. Xu, Power and subcarrier allocation for physical-layer security in ofdma-based broadband wireless networks. IEEE Trans. Inf. Forensics Secur. 6(3), 693–702 (2011)
X. Wang, Q.Z. Sheng, X.S. Fang, L. Yao, X. Xu, X. Li, An integrated Bayesian approach for effective multi-truth discovery, in Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (ACM, New York, 2015), pp. 493–502
C.J. Watkins, P. Dayan, Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
D.J. White, Markov Decision Processes (Wiley, New York, 1993)
M. Wilhelm, I. Martinovic, J.B. Schmitt, V. Lenders, Short paper: reactive jamming in wireless networks: how realistic is the threat?, in Proceedings of the Fourth ACM Conference on Wireless Network Security (ACM, New York, 2011), pp. 47–52
M. Wilhelm, I. Martinovic, J.B. Schmitt, V, Lenders, Wifire: a firewall for wireless networks, in ACM SIGCOMM Computer Communication Review, vol. 41 (ACM, New York, 2011), pp. 456–457
G.J. Woeginger, Exact algorithms for np-hard problems: a survey, in Combinatorial Optimization – Eureka, You Shrink! (Springer, New York, 2003), pp. 185–207
B. Wu, J. Chen, J. Wu, M. Cardei, A survey of attacks and countermeasures in mobile ad hoc networks, in Wireless Network Security (Springer, New York, 2007), pp. 103–135
Y. Wu, B. Wang, K.R. Liu, T.C. Clancy, Anti-jamming games in multi-channel cognitive radio networks. IEEE J. Sel. Areas Commun. 30(1), 4–15 (2012)
F. Wu, R. Zhang, L.L. Yang, W. Wang, Transmitter precoding-aided spatial modulation for secrecy communications. IEEE Trans. Veh. Technol. 65(1), 467–471 (2016)
A.M. Wyglinski, D.P. Orofino, M.N. Ettus, T.W. Rondeau, Revolutionizing software defined radio: case studies in hardware, software, and education. IEEE Commun. Mag. 54(1), 68–75 (2016)
Z. Xi, L. Li, G. Shi, S. Wang, A comparative study of encryption algorithms in wireless sensor network, in Wireless Communications, Networking and Applications, ed. by Q.A. Zeng (Springer, New Delhi, 2016), pp. 1087–1097
L. Xiao, L. Greenstein, N. Mandayam, W. Trappe, Fingerprints in the ether: using the physical layer for wireless authentication, in IEEE International Conference on Communications, 2007. ICC’07 (IEEE, Glasgow, 2007), pp. 4646–4651
Q. Yan, H. Zeng, T. Jiang, M. Li, W. Lou, Y.T. Hou, Mimo-based jamming resilient communication in wireless networks, in 2014 Proceedings IEEE INFOCOM (IEEE, Toronto, 2014), pp. 2697–2706
Z. Yu, J.J. Tsai, A framework of machine learning based intrusion detection for wireless sensor networks, in IEEE International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing, 2008. SUTC’08 (IEEE, Taichung, 2008), pp. 272–279
L. Zhang, T. Melodia, Hammer and anvil: the threat of a cross-layer jamming-aided data control attack in multihop wireless networks, in Proceedings of the IEEE Conference on Communications and Network Security (CNS), Florence (2015), pp. 361–369
L. Zhang, F. Restuccia, T. Melodia, S.M. Pudlewski, Learning to detect and mitigate cross-layer attacks in wireless networks: framework and applications, in Proceedings of the IEEE Conference on Communications and Network Security (CNS), Las Vegas (2017), pp. 361–369
L. Zhang, F. Restuccia, T. Melodia, S. Pudlewski, Taming cross-layer attacks in wireless networks: a Bayesian learning approach. IEEE Trans. Mobile Comput. (2018). https://doi.org/10.1109/TMC.2018.2864155
J. Zheng, A. Jamalipour, Wireless Sensor Networks: A Networking Perspective (Wiley, New York, 2009)
P. Zhou, Y. Chang, J.A. Copeland, Reinforcement learning for repeated power control game in cognitive radio networks. IEEE J. Sel. Areas Commun. 30(1), 54–69 (2012)
L. Zhou, D. Wu, B. Zheng, M. Guizani, Joint physical-application layer security for wireless multimedia delivery. IEEE Commun. Mag. 52(3), 66–72 (2014). https://doi.org/10.1109/MCOM.2014.6766087
Y. Zou, J. Zhu, X. Wang, L. Hanzo, A survey on wireless security: technical challenges, recent advances, and future trends. Proc. IEEE 104, 1727–1765 (2016)
F. Restuccia, T. Melodia, Big data goes small: real-time spectrum-driven embedded wireless networking through deep learning in the RF loop, in Proceedings of IEEE International Conference on Computer Communications (INFOCOM), Paris (May 2019)
J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, T. Melodia, Machine learning for wireless communications in the Internet of things: a comprehensive survey. Preprint. arXiv:1901.07947
S. D’Oro, F. Restuccia, T. Melodia, Hiding data in plain sight: undetectable wireless communications through pseudo-noise asymmetric shift keying, in Proceedings of IEEE International Conference on Computer Communications (INFOCOM), Paris (May 2019)
F. Restuccia, S. D’Oro, T. Melodia, Securing the internet of things in the age of machine learning and software-defined networking. IEEE Internet Things J. 5(6) (2018)
F. Restuccia, N. Ghosh, S. Bhattacharjee, S.K. Das, T. Melodia, Quality of information in mobile crowd sensing: survey and research challenges. ACM Trans. Sensor Netw. 13(4), 34 (2017)
Acknowledgements
This work is based upon work supported in part by ONR grants 0014-16-1-2213 and N00014-17-1-2046, ARMY W911NF-17-1-0034, and NSF CNS-1618727.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply
About this chapter
Cite this chapter
Restuccia, F., D’Oro, S., Zhang, L., Melodia, T. (2019). The Role of Machine Learning and Radio Reconfigurability in the Quest for Wireless Security. In: Wang, C., Lu, Z. (eds) Proactive and Dynamic Network Defense. Advances in Information Security, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-030-10597-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-10597-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10596-9
Online ISBN: 978-3-030-10597-6
eBook Packages: Computer ScienceComputer Science (R0)