Skip to main content

Towards Work-Efficient Parallel Parameterized Algorithms

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11355)


Parallel parameterized complexity theory studies how fixed-parameter tractable (fpt) problems can be solved in parallel. Previous theoretical work focused on parallel algorithms that are very fast in principle, but did not take into account that when we only have a small number of processors (between 2 and, say, 1024), it is more important that the parallel algorithms are work-efficient. In the present paper we investigate how work-efficient fpt algorithms can be designed. We review standard methods from fpt theory, like kernelization, search trees, and interleaving, and prove trade-offs for them between work efficiency and runtime improvements. This results in a toolbox for developing work-efficient parallel fpt algorithms.


  • Parallel computation
  • Fixed-parameter tractability
  • Work efficiency

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-10564-8_27
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-10564-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)


  1. 1.

    Of course, we actually branch on a vertex of degree at least 3, meaning that \(D = \{(1,3); (1,4); (1,5); \dots \}\) holds, but \(d = (1,3)\) clearly leads to the largest and deepest search trees and it suffices to only consider this “worst d.”.


  1. Bannach, M., Stockhusen, C., Tantau, T.: Fast parallel fixed-parameter algorithms via color coding. In: IPEC 2015, pp. 224–235 (2015)

    Google Scholar 

  2. Bannach, M., Tantau, T.: Parallel multivariate meta-theorems. In: IPEC 2016, pp. 4:1–4:17 (2016)

    Google Scholar 

  3. Bannach, M., Tantau, T.: Computing hitting set kernels by AC\(^0\)-circuits. In: STACS 2018, pp. 9:1–9:14 (2018)

    Google Scholar 

  4. Bannach, M., Tantau, T.: Computing kernels in parallel: Lower and upper bounds. In: IPEC 2018, pp. 13:1–13:14 (2018)

    Google Scholar 

  5. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized tractability. Ann. Pure Appl. Logic 84(1), 119–138 (1997)

    CrossRef  MathSciNet  Google Scholar 

  6. Cesati, M., Di Ianni, M.: Parameterized parallel complexity. In: Pritchard, D., Reeve, J. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 892–896. Springer, Heidelberg (1998).

    CrossRef  MATH  Google Scholar 

  7. Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.J.: Solving large fpt problems on coarse-grained parallel machines. JCSS 67(4), 691–706 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)

    CrossRef  MathSciNet  Google Scholar 

  9. Downey, R., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999).

    CrossRef  MATH  Google Scholar 

  10. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space and circuit complexity of parameterized problems: classes and completeness. Algorithmica 71(3), 661–701 (2015)

    CrossRef  MathSciNet  Google Scholar 

  11. Han, Y.: An improvement on parallel computation of a maximal matching. IPL 56(6), 343–348 (1995)

    CrossRef  MathSciNet  Google Scholar 

  12. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)

    Google Scholar 

  13. Karp, R.M., Wigderson, A.: A fast parallel algorithm for the maximal independent set problem. J. ACM 32(4), 762–773 (1985)

    CrossRef  MathSciNet  Google Scholar 

  14. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. IPL 73(3), 125–129 (2000)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Malte Skambath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bannach, M., Skambath, M., Tantau, T. (2019). Towards Work-Efficient Parallel Parameterized Algorithms. In: Das, G., Mandal, P., Mukhopadhyaya, K., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science(), vol 11355. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10563-1

  • Online ISBN: 978-3-030-10564-8

  • eBook Packages: Computer ScienceComputer Science (R0)