Skip to main content

Analyzing the Quantum Annealing Approach for Solving Linear Least Squares Problems

  • Conference paper
  • First Online:
Book cover WALCOM: Algorithms and Computation (WALCOM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11355))

Included in the following conference series:

Abstract

With the advent of quantum computers, researchers are exploring if quantum mechanics can be leveraged to solve important problems in ways that may provide advantages not possible with conventional or classical methods. A previous work by O’Malley and Vesselinov in 2016 briefly explored using a quantum annealing machine for solving linear least squares problems for real numbers. They suggested that it is best suited for binary and sparse versions of the problem. In our work, we propose a more compact way to represent variables using two’s and one’s complement on a quantum annealer. We then do an in-depth theoretical analysis of this approach, showing the conditions for which this method may be able to outperform the traditional classical methods for solving general linear least squares problems. Finally, based on our analysis and observations, we discuss potentially promising areas of further research where quantum annealing can be especially beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quantum enhanced optimization (qeo). https://www.iarpa.gov/index.php/research-programs/qeo

  2. Adachi, S.H., Henderson, M.P.: Application of quantum annealing to training of deep neural networks. arXiv preprint arXiv:1510.06356 (2015)

  3. Aramon, M., Rosenberg, G., Miyazawa, T., Tamura, H., Katzgraber, H.G.: Physics-inspired optimization for constraint-satisfaction problems using a digital annealer. arXiv preprint arXiv:1806.08815 (2018)

  4. Boixo, S., et al.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10(3), 218 (2014)

    Article  Google Scholar 

  5. Chang, X.W., Han, Q.: Solving box-constrained integer least squares problems. IEEE Trans. Wirel. Commun. 7(1), 277–287 (2008)

    Article  Google Scholar 

  6. Do, Q.L.: Numerically efficient methods for solving least squares problems (2012)

    Google Scholar 

  7. Dorband, J.E.: Stochastic characteristics of qubits and qubit chains on the D-wave 2X. arXiv preprint arXiv:1606.05550 (2016)

  8. Dorband, J.E.: A method of finding a lower energy solution to a QUBO/Ising objective function. arXiv preprint arXiv:1801.04849 (2018)

  9. Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sarlós, T.: Faster least squares approximation. Numer. math. 117(2), 219–249 (2011)

    Article  MathSciNet  Google Scholar 

  10. Grote, M.J., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18(3), 838–853 (1997)

    Article  MathSciNet  Google Scholar 

  11. Honjo, T., Inagaki, T., Inaba, K., Ikuta, T., Takesue, H.: Long-term stable operation of coherent Ising machine for cloud service. In: CLEO: Science and Innovations, pp. JTu2A-87. Optical Society of America (2018)

    Google Scholar 

  12. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)

    Article  Google Scholar 

  13. Karimi, K., et al.: Investigating the performance of an adiabatic quantum optimization processor. Quantum Inf. Process. 11(1), 77–88 (2012)

    Article  Google Scholar 

  14. OGorman, B., Babbush, R., Perdomo-Ortiz, A., Aspuru-Guzik, A., Smelyanskiy, V.: Bayesian network structure learning using quantum annealing. Eur. Phys. J. Spec. Top. 224(1), 163–188 (2015)

    Article  Google Scholar 

  15. O’Malley, D., Vesselinov, V.V.: ToQ. jl: A high-level programming language for D-wave machines based on Julia. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7. IEEE (2016)

    Google Scholar 

  16. O’Malley, D., Vesselinov, V.V., Alexandrov, B.S., Alexandrov, L.B.: Nonnegative/binary matrix factorization with a D-wave quantum annealer. arXiv preprint arXiv:1704.01605 (2017)

  17. Pilanci, M., Wainwright, M.J.: Iterative Hessian sketch: fast and accurate solution approximation for constrained least-squares. J. Mach. Learn. Res. 17(1), 1842–1879 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Tanaka, S., Tamura, R., Chakrabarti, B.K.: Quantum Spin Glasses, Annealing and Computation. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  19. Tsakonas, E., Jaldén, J., Ottersten, B.: Robust binary least squares: relaxations and algorithms. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3780–3783. IEEE (2011)

    Google Scholar 

  20. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4), 1715–1735 (2011)

    Article  MathSciNet  Google Scholar 

  21. Wang, G.: Quantum algorithm for linear regression. Phys. Rev. A 96(1), 012335 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Daniel O’Malley from LANL for his feedback. A special thanks to John Dorband, whose suggestions inspired the development the one’s/two’s complement encoding. Finally, the authors would like to thank Milton Halem of UMBC and D-wave Systems for providing access to their machines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajinkya Borle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borle, A., Lomonaco, S.J. (2019). Analyzing the Quantum Annealing Approach for Solving Linear Least Squares Problems. In: Das, G., Mandal, P., Mukhopadhyaya, K., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science(), vol 11355. Springer, Cham. https://doi.org/10.1007/978-3-030-10564-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10564-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10563-1

  • Online ISBN: 978-3-030-10564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics