Graph Profile Realizations and Applications to Social Networks

  • Amotz Bar-Noy
  • Keerti Choudhary
  • David PelegEmail author
  • Dror Rawitz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11355)


The social standing of individuals in a social network is typically determined locally according to the individual’s neighborhood or by a comparison between the individual and its neighbors. In this paper, we consider various criteria that measure social status and the extent in which individuals are satisfied with their social status. We study these criteria from the point of view of network realization: given a satisfaction specification, decide whether there exists a network realizing this specification.


  1. 1.
    Aigner, M., Triesch, E.: Realizability and uniqueness in graphs. Discret. Math. 136, 3–20 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bar-Noy, A., Choudhary, K., Peleg, D., Rawitz, D.: Structural information and communication complexity. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 3–13. Springer, Heidelberg (2018). Scholar
  3. 3.
    Blitzstein, J.K., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Math. 6(4), 489–522 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Broom, M., Cannings, C.: Graphic deviation. Discret. Math. 338, 701–711 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Choudum, S.A.: A simple proof of the Erdös-Gallai theorem on graph sequences. Bull. Aust. Math. Soc. 33(1), 67–70 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cloteaux, B.: Fast sequential creation of random realizations of degree sequences. Internet Math. 12(3), 205–219 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Eom, Y.-H., Jo, H.-H.: Generalized friendship paradox in complex networks: the case of scientific collaboration. Sci. Rep. 4(4603), 1–6 (2014)Google Scholar
  8. 8.
    Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices [Hungarian]. Matematikai Lapok 11, 264–274 (1960)zbMATHGoogle Scholar
  9. 9.
    Feld, S.L.: Why your friends have more friends than you do. Am. J. Sociol. 96, 1464–1477 (1991)CrossRefGoogle Scholar
  10. 10.
    Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph - I. SIAM J. Appl. Math. 10(3), 496–506 (1962)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Havel, V.: A remark on the existence of finite graphs [in Czech]. Casopis Pest. Mat. 80, 477–480 (1955)zbMATHGoogle Scholar
  12. 12.
    Kelly, P.J.: A congruence theorem for trees. Pacific J. Math. 7, 961–968 (1957)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mihail, M., Vishnoi, N.: On generating graphs with prescribed degree sequences for complex network modeling applications. In: 3rd Workshop on Approximation and Randomization Algorithms in Communication Networks (2002)Google Scholar
  14. 14.
    Mossel, E., Ross, N.: Shotgun assembly of labeled graphs. CoRR, abs/1504.07682 (2015)Google Scholar
  15. 15.
    O’Neil, P.V.: Ulam’s conjecture and graph reconstructions. Am. Math. Mon. 77, 35–43 (1970)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sierksma, G., Hoogeveen, H.: Seven criteria for integer sequences being graphic. J. Graph Theory 15(2), 223–231 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tripathi, A., Tyagi, H.: A simple criterion on degree sequences of graphs. Discret. Appl. Math. 156(18), 3513–3517 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ulam, S.M.: A Collection of Mathematical Problems. Wiley, Hoboken (1960)zbMATHGoogle Scholar
  19. 19.
    Wang, D.L., Kleitman, D.J.: On the existence of \(n\)-connected graphs with prescribed degrees (\(n>2\)). Networks 3, 225–239 (1973)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wormald, N.C.: Models of random regular graphs. Surv. Comb. 267, 239–298 (1999)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amotz Bar-Noy
    • 1
  • Keerti Choudhary
    • 2
  • David Peleg
    • 2
    Email author
  • Dror Rawitz
    • 3
  1. 1.City University of New York (CUNY)New York CityUSA
  2. 2.Weizmann Institute of ScienceRehovotIsrael
  3. 3.Bar Ilan UniversityRamat-GanIsrael

Personalised recommendations