Skip to main content

Collection Planning and Scheduling for Multiple Heterogeneous Satellite Missions: Survey, Optimization Problem, and Mathematical Programming Formulation

  • Chapter
  • First Online:
Modeling and Optimization in Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 144))

Abstract

This chapter introduces novel integrated management of multiple heterogeneous satellite missions for the purpose of intelligence collection. The focus is on optimization of acquisition planning and scheduling for various missions including single satellites and satellite constellations. The relevant optimization problem and its mathematical programming formulation that allow multiple area coverage plans for each acquisition request, as well as consideration of the quality measures of coverage plan, strip, and imaging opportunity, are presented. The chapter consists of a multi-mission planning system overview, a survey of relevant literature, a definition of the integrated acquisition scheduling optimization problem and its mathematical programming formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Augenstein, S.: Optimal scheduling of Earth-imaging satellites with human collaboration via directed acyclic graphs. In: The Intersection of Robust Intelligence and Trust in Autonomous Systems: AAAI Spring Symposium, 2014

    Google Scholar 

  2. Benoist, T., Rottembourg, B.: Upper bounds of the maximal revenue of an earth observation satellite. 4OR: Quart. J. Belgian, French and Italian Oper. Res. Soc. 2(3), 235–249 (2004)

    Article  Google Scholar 

  3. Bensana, E., Verfaillie, G., Agnese, J.C., Bataille, N., Blumstein, D.: Exact and inexact methods for the daily management of an earth observation satellite. In: Proceedings of the 4th International Symposium on Space Mission Operations and Ground Data Systems (SpaceOps-96), Munich, Germany, 1996

    Google Scholar 

  4. Bianchessi, N., Cordeau, J.-F., Desrosiers, J., Laporte, G., Raymond, V.: A heuristic for the multi-satellite, multi-orbit and multi-user management of earth observation satellites. Eur. J. Oper. Res. 177, 750–762 (2007)

    Article  Google Scholar 

  5. Cordeau, J.-F., Laporte, G.: Maximizing the value of an earth observation satellite orbit. J. Oper. Res. Soc. 56(8), 962–968 (2005)

    Article  Google Scholar 

  6. Dishan, Q., Chuan, H., Jin, L., Manhao, M.: A dynamic scheduling method of earth-observing satellites by employing rolling horizon strategy. Sci. World J. 2013, 1–11 (2013)

    Article  Google Scholar 

  7. Farr, T.G.: Chapter 5: Radar interactions with geologic surface. In Guide to Magellan Image Interpretation, NASA and Jet Propulsion Laboratory, California Institute of Technology, 1993

    Google Scholar 

  8. Fisher, W.: The optiwise corporation deconfliction scheduler algorithms (as used in STK/Scheduler). Optwise (2004)

    Google Scholar 

  9. Fisher, W.A., Herz, E.: A flexible architecture for creating scheduling algorithms as used in STK scheduler. White paper, Optwise Corporation and Orbit Logic Incorporated, 2013

    Google Scholar 

  10. Frank, J., Jonsson, A., Morris, R., Smith, D.: Planning and scheduling for fleets of earth observing satellites. In: Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS-01), Montreal, Canada, 2001

    Google Scholar 

  11. Gabrel, V., Murat, C.: Mathematical programming for earth observation satellite mission planning. In: Ciriani, T., Fasano, G., Gliozzi, S., Tadei, R. (eds.) Operations Research in Space and Air, pp. 103–122. Kluwer, Dordrecht (2003)

    Chapter  Google Scholar 

  12. Gabrel, V., Vanderpooten, D.: Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite. Eur. J. Oper. Res. 139, 533–542 (2002)

    Article  Google Scholar 

  13. Gabrel, V., Moulet, A., Murat, C., Paschos, V.: A new single model and derived algorithms for the satellite shot planning problem using graph theory concepts. Ann. Oper. Res. 69, 115–134 (1997)

    Article  Google Scholar 

  14. Globus, A., Crawford, J., Lohn, J., Pryor, A.: Scheduling earth observing satellites with evolutionary algorithms. In: Proceedings of the 1st International Conference on Space Mission Challenges for Information Technology (SMC-IT-03), Pasadena, CA, 2003

    Google Scholar 

  15. Globus, A., Crawford, J., Lohn, J., Morris, R.: A comparison of techniques for scheduling earth observing satellites. In: Proceedings of the 16th Conference on Innovative Applications of Artificial Intelligence (IAAI-04), San Jose, CA, 2004

    Google Scholar 

  16. Hall, N., Magazine, M.: Maximizing the value of a space mission. Eur. J. Oper. Res. 78, 224–241 (1994)

    Article  Google Scholar 

  17. Hwang, F.-T., Yeh, Y.-Y., Li, S.-Y.: Multi-objective optimization for multi-satellite scheduling system. In: Proceedings of 31st Asian Conference on Remote Sensing 2010 (ACRS 2010), Hanoi, 1–5 Nov (2010)

    Google Scholar 

  18. Lemaitre, M., Verfaillie, G., Jouhaud, F., Lachiver, J.M., Bataille, N.: How to manage the new generation of agile earth observation satellites. In: Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space, pp. 1–10 (2000)

    Google Scholar 

  19. Lemaitre, M., Verfaillie, G., Jouhaud, F., Lachiver, J.-M., Bataille, N.: Selecting and scheduling observations of agile satellites. Aerosp. Sci. Technol. 6, 367–381 (2002)

    Article  Google Scholar 

  20. Liao, D., Chang, Y.: Imaging order scheduling of an Earth observation satellite. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 37(5), 794–802 (2007)

    Article  Google Scholar 

  21. Lin, W., Liao, D., Liu, C., Lee, Y.: Daily imaging scheduling of an earth observation satellite. IEEE Trans. Syst. Man Cybern. 35(2), 213–223 (2005)

    Article  Google Scholar 

  22. Lin, W.C., Chang, S.C.: Hybrid algorithms for satellite imaging scheduling. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, 10–12 Oct 2005

    Google Scholar 

  23. Malladi, K.T., Mitrovic-Minic, S, Karapetyan, D., Punnen, A.P.: Satellite constellation image acquisition problem: a case study. In: Fasano G., Pinter J.D. (eds.) Space Engineering: Modelling and Optimization with Case Studies. Springer (2016)

    Google Scholar 

  24. Malladi, K.T., Mitrovic-Minic, S., Punnen, A.P.: Cluster restricted maximum weight clique problem: algorithms and empirical analysis. Comput. Oper. Res. 85, 113–128 (2017)

    Article  MathSciNet  Google Scholar 

  25. Mitrovic-Minic, S., Punnen, A.P.: Very large-scale variable neighborhood search for the generalized assignment problem. Journal of Interdisciplinary Mathematics. 11(5), 653–670 (2008)

    Article  MathSciNet  Google Scholar 

  26. Mitrovic-Minic, S., Punnen, A.P.: Variable intensity local search. Annals of Information Systems. 10, 245–252 (2009)

    Article  Google Scholar 

  27. Mitrovic-Minic, S., Punnen, A.P.: Local search intensified: very large-scale variable neighborhood search for the multi-resource generalized assignment problem. Discret. Optim. 6, 370–377 (2009)

    Article  MathSciNet  Google Scholar 

  28. Mitrovic-Minic, S., Berger, J., Thomson, D.: Collection Planning Management: Multi-Satellite Collection Scheduling. MDA, CR, DRDC-RDDC-2016-C309 (2016)

    Google Scholar 

  29. Muraoka, H., Cohen, R., Ohno, T., Doi, N.: ASTER observation scheduling algorithm. In: Proceedings of the 5th International Symposium on Space Mission Operations and Ground Data Systems (SpaceOps-98), Tokyo, Japan, 1998

    Google Scholar 

  30. Nelson, F.N.: Scheduling optimization for imagery satellite constellations using column generation. PhD Thesis, Department of Systems Engineering and Operations Research, Volgenau School of Engineering, George Mason University (2012)

    Google Scholar 

  31. Pemberton, J.: Towards scheduling over-constrained remote sensing satellites. In: Proceedings of the 2nd NASA International Workshop on Planning and Scheduling for Space, pp. 84–89, San Francisco, CA, 2000

    Google Scholar 

  32. Pixalytics. https://www.pixalytics.com/sats-orbiting-earth-2017/ (2017)

  33. Secker, J., Robson, M., Rowe, J., Vachon, P.W.: Automated acquisition planning for commercial satellite imagery. In: IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006, pp. 3279–3282 (2006)

    Google Scholar 

  34. Tangpattanakul, P., Jozefowiez, N., Lopez, P.: A multi-objective local search heuristic for scheduling earth observations taken by an agile satellite. Eur. J. Oper. Res. 245, 542–554 (2015)

    Article  MathSciNet  Google Scholar 

  35. Vachon, P.W., Secker, J., Werle, D.: Remote sensing in support of Arctic intelligence: Development of sensor selection rules. DRDC Ottawa TM 2007–109 (2007)

    Google Scholar 

  36. Vasquez, M., Hao, J.K.: A logic-constrained knapsack formulation and a Tabu algorithm for the daily photograph scheduling of an earth observation satellite. Journal of Computational Optimization and Applications. 20(2), 137–157 (2001)

    Article  MathSciNet  Google Scholar 

  37. Vasquez, M., Hao, J.K.: Upper bounds for the SPOT 5 daily photograph scheduling problem. J. Comb. Optim. 7, 87–103 (2003)

    Article  MathSciNet  Google Scholar 

  38. Verfaillie, G.: Planning and scheduling activities for earth surveillance and observation satellites: a constraint-based perspective. In: ICAPS 2013 Summer School, Perugia, 4–7 June 2013

    Google Scholar 

  39. Verfaillie, G., Lemaitre, M.: Planning and scheduling activities for earth surveillance and observation satellites: a constraint-based perspective. In: ICAPS Tutorial 2006, Cumbria, 2006

    Google Scholar 

  40. Verfaillie, G., Lemaitre, M., Schiex, T.: Russian doll search for solving constraint optimization problems. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), pp. 181–187. Portland 1996

    Google Scholar 

  41. Wang, J., Demeulemeester, E., Qiu, D., Liu, J.: Exact and inexact scheduling algorithms for multiple earth observation satellites under uncertainties of clouds. In: Technical Chapter KBI_1514, KU Leuven, Faculty of Economics and Business, Preprint submitted to EJOR on 1 July 2015

    Google Scholar 

  42. Wang, P., Tan, Y., Reinelt, G.: A comparison of heuristic methods for scheduling Earth observing satellites fleet. In: Proceedings of 2009 International Conference on Information Technology and Computer Science, Kiev, 25–26 July 2009

    Google Scholar 

  43. Wolfe, W., Sorensen, S.: Three scheduling algorithms applied to the earth observing systems domain. Manag. Sci. 46(1), 148–168 (2000)

    Article  Google Scholar 

  44. Wu, G., Wang, H., Li, H., Pedrycz, W., Qiu, D., Ma, M., Liu, J.: An adaptive simulated annealing-based satellite observation scheduling method combined with a dynamic task clustering strategy. Comput. Res. Repos. (2014). https://arxiv.org/abs/1401.6098

  45. Xiaolu, L., Baocun, B., Yingwu, C., Feng, Y.: Multi satellites scheduling algorithm based on task merging mechanism. Appl. Math. Comput. 230, 687–700 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Berger .

Editor information

Editors and Affiliations

Appendix: Survey Summary

Appendix: Survey Summary

Table 1 summarizes the literature survey presented in this chapter. The manuscripts are grouped by the solution approach in the following manner: exact methods, heuristics and metaheuristics, constraint programming, and bounds. Within each group, the manuscripts are listed chronologically.

Table 1 Summary of the literature on image acquisition scheduling for multi-satellite collection scheduling

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitrovic-Minic, S., Thomson, D., Berger, J., Secker, J. (2019). Collection Planning and Scheduling for Multiple Heterogeneous Satellite Missions: Survey, Optimization Problem, and Mathematical Programming Formulation. In: Fasano, G., Pintér, J. (eds) Modeling and Optimization in Space Engineering . Springer Optimization and Its Applications, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-10501-3_11

Download citation

Publish with us

Policies and ethics