Skip to main content

Thermal Design and Optimization of Heat Exchangers

  • Chapter
  • First Online:
Thermal System Optimization

Abstract

Heat exchangers are energy conservation equipment used to transfer heat between hot and cold fluid. In this chapter, thermal modeling of different types of heat exchangers like shell and tube heat exchanger, plate-fin heat exchanger, fin and tube heat exchanger, plate heat exchanger, and rotary regenerator is presented. The objective function for each of the heat exchanger is derived from the thermal model . Optimization of a derived objective is performed by implementing 11 different metaheuristic algorithms for each heat exchanger, and comparative results are tabulated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed, A. M., Abed, I. A., Majdi, H. S., Al-Shamani, A. N., & Sopian, K. (2016). A new optimization approach for shell and tube heat exchangers by using electromagnetism-like algorithm (EM), Heat and Mass Transfer, 52(12), 2621–2634.

    Article  Google Scholar 

  • Agarwal A, and Gupta SK. (2008) ‘Jumping gene adaptations of NSGA-II and their use in the multi-objective optimal design of shell and tube heat exchangers’, Chemical Engineering Research and Design, vol. 86, 123–139.

    Article  Google Scholar 

  • Ahmadi P, Hajabdollahi H and Dincer I. (2011) ‘Cost and entropy generation minimization of a cross-flow plate fin heat exchanger using multi-objective genetic algorithm’, Journal of Heat Transfer-The American Society of Mechanical Engineering, vol. 133, 21801-21809.

    Article  Google Scholar 

  • Amini M and Bazargan M. (2014) ‘Two objective optimization in shell-and-tube heat exchangers using genetic algorithm’, Applied Thermal Engineering, vol. 69, 278–285.

    Article  Google Scholar 

  • Arsenyeva OP, Tovazhnyansky LL, and Kapustenko PO. (2011) ‘Optimal design of plate and frame heat exchangers for efficient heat recovery in process industries’, Energy, vol. 36, 4588–4598.

    Google Scholar 

  • Ayala HVH, Keller P, Morais MF, Mariani VC, Coelho LS and Rao RV. (2016) ‘Design of heat exchangers using a novel multi objective free search differential evolution paradigm’, Applied Thermal Engineering, vol. 94, 170–177.

    Article  Google Scholar 

  • Azad AV and Amidpour M. (2011)’Economic optimization of shell and tube heat exchanger based on constructal theory’, Energy, vol. 36, 1087–1096.

    Google Scholar 

  • Babaelahi M, Sadri S and Sayyaadi H. (2014) ‘Multi-objective optimization of a cross-flow plate heat exchanger using entropy generation minimization’, Chemical Engineering Technology, vol. 37, 87–94.

    Article  Google Scholar 

  • Babu BV and Munawar SA. (2007) ‘Differential evolution strategies for optimal design of shell-and-tube heat exchangers’, Chemical Engineering Science, vol. 62, 3720–3739.

    Article  Google Scholar 

  • Bejan A. (1997) ‘The concept of irreversibility in heat exchanger design: counter flow heat exchangers for gas-to-gas applications’, Journal of Heat Transfer-The American Society Mechanical Engineering, vol. 99, 374–380.

    Article  Google Scholar 

  • Bell KJ. Delaware method for shell side design, In Kakac S., A.E., Bergles, F. and Mayinger, F. (eds.) (1981) Heat Exchangers: Thermal-Hydraulic Fundamentals and Design, Hemisphere/McGraw-Hill, Washington, DC.

    Google Scholar 

  • Bell KJ. (1963) Final report of the cooperative research program on shell and tube heat exchangers, University of Delaware Engineering Experimental Station Bulletin No. 5, Newark, Delaware.

    Google Scholar 

  • Büyükalaca O and Yilmaz T. (2002) ‘Influence of rotational speed on effectiveness of rotary type heat exchanger’, Heat and Mass Transfer, vol. 38, 441–447.

    Article  Google Scholar 

  • Caputo AC, Pelagagge PM and Salini P. (2008) ‘Heat exchanger design based on economic optimization’, Applied Thermal Engineering, vol. 28, 1151–1159.

    Article  Google Scholar 

  • Caputo AC, Pelagagge PM and Salini P. (2015) ‘Heat exchanger optimized design compared with installed industrial solutions’, Applied Thermal Engineering, vol. 87, 371–380.

    Google Scholar 

  • Caputo AC, Pelagagge PM and Salini P. (2011) ‘Joint economic optimization of heat exchanger design and maintenance policy’, Applied Thermal Engineering, vol. 31, 1381–1392.

    Article  Google Scholar 

  • Caputo AC, Pelagagge PM and Salini P. (2016) ‘Manufacturing cost model for heat exchangers optimization’, Applied Thermal Engineering, vol. 94, 513–533.

    Article  Google Scholar 

  • Cho DH, Seo SK, Lee CJ and Lim Y. (2017) ‘Optimization of Layer Patterning on a Plate Fin Heat Exchanger Considering Abnormal Operating Conditions’, Applied Thermal Engineering.

    Google Scholar 

  • Colgate SA. (1995) Regenerator Optimization for Stirling Cycle Refrigeration, In Cryocoolers (pp. 247–258). Springer, US.

    Google Scholar 

  • Costa ALH and Queiroz EM. (2008) ‘Design optimization of shell and tube heat exchanger’, Applied Thermal Engineering, vol. 28, 1798–1805.

    Article  Google Scholar 

  • De Vasconcelos Segundo EH, Amoroso AL, Mariani VC and dos Santos Coelho L. (2017) ‘Thermodynamic optimization design for plate-fin heat exchangers by Tsallis JADE’, International Journal of Thermal Sciences, vol. 113, 136–44.

    Article  Google Scholar 

  • Du J, Ni YM and Fang YS. (2016) ‘Correlations and optimization of a heat exchanger with offset fins by genetic algorithm combining orthogonal design’, Applied Thermal Engineering, vol. 107, 1091–1103.

    Article  Google Scholar 

  • Durmus A, Benil B, Kurtbas I and Gul H. (2009) ‘Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles’, International Journal of Heat Mass Transfer, vol. 52, 1451–1457.

    Article  Google Scholar 

  • Eryener D. (2006) ‘Thermo-economic optimization of baffle spacing for shell and tube heat exchangers’, Energy Conversion and Management, vol. 47, 1478–1489.

    Article  Google Scholar 

  • Fesanghary M, Damangir E and Soleimani I. (2009) ‘Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm’, Applied Thermal Engineering, vol. 29, 1026–1031.

    Article  Google Scholar 

  • Foli K, Okabe T, Olhofer M, Jin Y, and Sebdhoff B. (2006) ‘Optimization of micro heat exchanger: CFD, analytical approach and multi-objective evolutionary algorithms’ International Journal of Heat and Mass Transfer, vol. 49, 1090–1099.

    MATH  Google Scholar 

  • Gandomi AH, Alavi AH and Krill herd. (2012) ‘A new bio-inspired optimization algorithm’, Communications in Nonlinear Science and Numerical Simulation, vol. 17(12), 4831–45.

    Google Scholar 

  • Ghodsipour N and Sadrameli M. (2003) ‘Experimental and sensitivity analysis of a rotary air pre-heater for the flue gas heat recovery’, Applied Thermal Engineering, vol. 23, 571–580.

    Article  Google Scholar 

  • Ghosh S, Ghosh I, Pratihar DK, Maiti B and Das PK. (2011) ‘Optimum stacking pattern for multi-stream plate-fin heat exchanger through a genetic algorithm’, International Journal Thermal Science, vol. 50, 214–224.

    Google Scholar 

  • Gnielinski V. (1976), ‘New equations for heat and mass transfer in turbulent pipe and channel flows’, International Chemical Engineering, vol. 16, 359–368

    Google Scholar 

  • Guo J, Cheng L and Xu M. (2009) ‘Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm’, Applied Thermal Engineering, vol. 29, 2954–2960.

    Article  Google Scholar 

  • Gut JAW and Pinto JM. (2003) ‘Modeling of plate heat exchangers with generalized configurations’, International Journal of Heat and Mass Transfer, vol. 46, 2571–2585.

    Article  Google Scholar 

  • Gut JAW and Pinto JM. (2004) ‘Optimal configuration design for plate heat exchangers’, International Journal of Heat and Mass Transfer, vol. 47, 4833–4848.

    Article  Google Scholar 

  • Hadidi A and Nazari A. (2013) ‘Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm’, Applied Thermal Engineering, vol. 51, 1263–1272.

    Article  Google Scholar 

  • Hadidi A. (2015) ‘A robust approach for optimal design of plate fin heat exchangers using biogeography-based optimization (BBO) algorithm’, Applied Energy, vol. 150, 196–210.

    Article  Google Scholar 

  • Hadidi A, Hadidi M and Nazari A. (2013) ‘A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view’, Energy Conversion and Management, vol. 67, 66–74.

    Article  Google Scholar 

  • Hajabdollahi F, Hajabdollahi Z and Hajabdollahi H. (2013) ‘Optimum design of gasket plate heat exchanger using multimodal genetic algorithm’, Heat Transfer Research, vol. 43, 1–19.

    Google Scholar 

  • Hajabdollahi H, Ahmadi P and Dincer I. (2011) ‘Multi-objective optimization of plain fin- and-tube heat exchanger using evolutionary algorithm’, Journal of Thermophysics and Heat Transfer, vol. 25(3), 424–31.

    Article  Google Scholar 

  • Hajabdollahi H, Ahmadi P, and Dincer I. (2011) ‘Thermo-economic optimization of a shell and tube condenser using both genetic algorithm and particle swarm’, International Journal of Refrigeration, vol. 34(4), 1066–1076.

    Article  Google Scholar 

  • Hajabdollahi H and Hajabdollahi Z. (2016) ‘Assessment of nanoparticles in thermo-economic improvement of shell and tube heat exchanger’, Applied Thermal Engineering, vol. 106, 827–837.

    Google Scholar 

  • Hajabdollahi H. (2012) ‘Exergetic optimization of shell-and-tube heat exchanger using NSGA-II’, Heat Transfer Engineering, vol. 33, 618–628.

    Article  Google Scholar 

  • Hajabdollahi H. (2015) ‘Investigating the effect of non-similar fins in thermo-economic optimization of plate fin heat exchanger’, Applied Thermal Engineering, vol. 82,152–161.

    Article  Google Scholar 

  • Hajabdollahi H, Naderi M and Adimi S. (2016) ‘A comparative study on the shell and tube and gasket-plate heat exchangers: The economic viewpoint’, Applied Thermal Engineering, vol. 92, 271–282.

    Google Scholar 

  • Hajabdollahi H. (2017) ‘Comparison of stationary and rotary matrix heat exchangers using teaching-learning-based optimization algorithm’, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering.

    Google Scholar 

  • Hewitt GF. (1998) Heat Exchanger Design Handbook, Begell House, New York.

    Google Scholar 

  • Hsieh CT and Jang JY. (2012) ‘Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method’, Applied Thermal Engineering, vol. 42, 101–10.

    Article  Google Scholar 

  • Hwang CL and Yoon K. (2012) ‘Multiple attribute decision making: methods and applications a state-of-the-art survey’, Springer Science & Business Media, vol. 186.

    Google Scholar 

  • Incropera FP and DeWitt DP. (1998) Fundamentals of Heat and Mass Transfer, John Wiley, New York, USA.

    Google Scholar 

  • Jang JY, Hsu LF and Leu JS. (2013) ‘Optimization of the span angle and location of vortex generators in a plate-fin and tube heat exchanger’, International Journal of Heat and Mass Transfer, vol. 67, 432–44.

    Article  Google Scholar 

  • Jia, R., & Sundén, B. (2003, January). Optimal design of compact heat exchangers by an artificial neural network method. In ASME 2003 Heat Transfer Summer Conference (pp. 655–664). American Society of Mechanical Engineers.

    Google Scholar 

  • Kakac S and Liu H. (2002) Heat exchangers: Selection, rating and thermal design, CRC Press, New York.

    Book  MATH  Google Scholar 

  • Kays WM and London AL. (1984) Compact Heat Exchangers, McGraw Hill, New York.

    Google Scholar 

  • Kays WM, London AL. (1985) Compact Heat Exchangers, 3rd ed., McGraw Hill, New York, USA.

    Google Scholar 

  • Khosravi R, Khosravi A, Nahavandi S and Hajabdollahi H. (2015) ‘Effectiveness of evolutionary algorithms for optimization of heat exchangers’, Energy Conversion and Management, vol. 89, 281–288.

    Article  Google Scholar 

  • Lee J and Lee KS. (2015) ‘Friction and Colburn factor correlations and shape optimization of chevron-type plate heat exchangers’, Applied Thermal Engineering, vol. 89, 62–69.

    Article  Google Scholar 

  • Lemouedda A, Breuer M, Franz E, Botsch T and Delgado A. (2010) ‘Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger’, International journal of heat and mass transfer, vol. 53(23), 5386–99.

    Article  MATH  Google Scholar 

  • Li Q, Flamant G, Yuan X, Neveu P and Luo L. (2011) Compact heat exchangers: a review and future applications for a new generation of high temperature solar receivers’, Renewable and Sustainable Energy Reviews, vol. 15, 4855–4875.

    Google Scholar 

  • Liu C, Bu W and Xu D. (2017) ‘Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm’, International Journal of Heat and Mass Transfer, vol. 111, 65–82.

    Google Scholar 

  • Manglik RM and Bergles AE. (1995) ‘Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger’, Experimental Thermal and Fluid Science, vol. 10 (2), 171–180.

    Article  Google Scholar 

  • Mioralli PC and Ganzarolli MM. (2013) ‘Thermal analysis of a rotary regenerator with fixed pressure drop or fixed pumping power’, Applied Thermal Engineering, vol. 52(1), 187–197.

    Google Scholar 

  • Mirjalili S, Mirjalili SM and Lewis A. (2014) ‘Grey wolf optimizer’. Advances in Engineering Software, vol. 69, 46–61.

    Article  Google Scholar 

  • Mirzaei M, Hajabdollahi H and Fadakar H. (2017) ‘Multi-objective optimization of shell- and- tube heat exchanger by constructal theory’, Applied Thermal Engineering, vol. 125, 9–19.

    Google Scholar 

  • Mishra M, Das PK and Sarangi S. (2004) ‘Optimum design of cross flow plate-fin heat exchangers through genetic algorithm’, International Journal of Heat Exchangers, vol. 5(2), 379–402.

    Google Scholar 

  • Mishra M, Das PK. (2009) ‘Thermo-economic design-optimization of cross flow plate-fin heat exchanger using genetic algorithm’, International Journal of Exergy, vol. 6(6), 237–252.

    Article  Google Scholar 

  • Mohanty DK. (2016b) ‘Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view’, International Journal of Thermal Science, vol. 102, 228–238.

    Article  Google Scholar 

  • Mohanty DK. (2016a) ‘Gravitational search algorithm for economic optimization design of a shell and tube heat exchanger’, Applied Thermal Engineering, vol. 107, 184–193.

    Google Scholar 

  • Najafi H and Najafi B. (2010) ‘Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm’, Heat Mass Transfer, vol. 46, 639–647.

    Article  Google Scholar 

  • Najafi H, Najafi B and Hoseinpoori P. (2005)’ Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm’. Applied Thermal Engineering, vol. 31, 1839–1847.

    Google Scholar 

  • Ozcelik Y. (2007) ‘Exergetic optimization of shell and tube heat exchanger using a genetic based algorithm’, Applied Thermal Engineering, vol. 27, 1849–1856.

    Google Scholar 

  • Pacheco-Vega A, Sen M, Yang KT and McClain RL. (2001), ‘Correlations of fin-tube heat exchanger performance data using genetic algorithm, simulated annealing and interval methods’, In: Proceedings of ASME heat transfer division, vol. 369, USA, pp. 143–151.

    Google Scholar 

  • Pacheco-Vega A, Sen M and Yang KT. (2003) ‘Simultaneous determination of in-and-over- tube heat transfer correlations in heat exchangers by global regression’, International Journal Heat and Mass Transfer, vol. 46(6), 1029–1040.

    Article  MATH  Google Scholar 

  • Patel VK and Rao RV. (2011) ‘Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique’, Applied Thermal Engineering, vol. 30, 1417–1425.

    Article  Google Scholar 

  • Patel VK and Savsani VJ. (2014) ‘Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching-learning based optimization (MO-ITLBO) algorithm’, Chemical Engineering Research and Design, vol. 92, 2371–2382.

    Google Scholar 

  • Peng H, Ling X and Wu E. (2010) ‘An improved Particle Swarm Algorithm for Optimal Design of Plate-Fin Heat Exchangers’, Industrial and Engineering Chemistry Research, vol. 49, 6144–6149.

    Article  Google Scholar 

  • Peng H, Ling X. (2008) ‘Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms’, Applied Thermal Engineering, vol. 28, 642–650.

    Article  Google Scholar 

  • Ponce-Ortega JM, Serna-Gonzalez M and Jimenez-Gutierrez A. (2009) ‘Use of genetic algorithms for the optimal design of shell and tube heat exchangers’, Applied Thermal Engineering, vol. 29, 203–209.

    Article  Google Scholar 

  • Raja BD, Jhala RL and Patel VK. (2017a) ‘Many-objective optimization of shell and tube heat exchanger’, Thermal Science and Engineering Progress, vol. 2, 87–101.

    Article  Google Scholar 

  • Raja BD, Jhala RL and Patel V. (2017b) ‘Many-objective optimization of cross-flow plate-fin heat exchanger’, International Journal of Thermal Sciences, vol. 118, 320–39.

    Google Scholar 

  • Raja BD, Jhala RL and Patel V. (2016) ‘Multi-objective optimization of a rotary regenerator using tutorial training and self-learning inspired teaching-learning based optimization algorithm (TS-TLBO)’. Applied Thermal Engineering, vol. 93, 456–67.

    Google Scholar 

  • Raja BD, Patel VK and Jhala RL. (2017c) ‘Thermal design and optimization of fin-and-tube heat exchanger using heat transfer search algorithm’, Thermal Science and Engineering Progress, vol. 4, 45–57.

    Article  Google Scholar 

  • Raja BD, Jhala RL. and Patel VK. (2018) ‘Multi-objective thermo-economic and thermodynamics optimization of a plate–fin heat exchanger’, Heat Transfer—Asian Research, vol. 47, 253–270.

    Article  Google Scholar 

  • Raja BD., Jhala, RL and Patel VK. (2018) ‘Thermal-hydraulic optimization of plate heat exchanger: A multi-objective approach’, International Journal of Thermal Sciences, 124, 522–535.

    Article  Google Scholar 

  • Rao RV and Patel VK. (2011a) ‘Design optimization of shell and tube heat exchangers using swarm optimization algorithms’, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 225, 619–634.

    Article  Google Scholar 

  • Rao, RV. and Patel, VK. (2011b) ‘Thermodynamic optimization of plate-fin heat exchanger using teaching-learning-based optimization (TLBO) algorithm’ Optimization, vol. 10, 11–12.

    Google Scholar 

  • Rao RV and Patel VK. (2011c) ‘Design optimization of rotary regenerator using artificial bee colony algorithm’, Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, vol. 225(8), 1088–1098.

    Google Scholar 

  • Rao RV and Patel VK. (2013) ‘Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm’, Applied Mathematical Modelling, vol. 37, 1147–1162.

    Google Scholar 

  • Rao RV and Patel VK. (2010) ‘Thermodynamic optimization of cross-flow plate-fin heat exchangers using a particle swarm optimization technique’, International Journal of Thermal Science, vol. 49, 1712–1721.

    Google Scholar 

  • Ravagnani MASS, Silva AP, Biscaia Jr EC and Caballero JA. (2009) ‘Optimal Design of Shell- and-Tube Heat Exchangers Using Particle Swarm Optimization’, Industrial & Engineering Chemistry Research, vol. 48, 2927–2935.

    Google Scholar 

  • Reneaume, J. M., & Niclout, N. (2001). Plate fin heat exchanger design using simulated annealing. In Computer Aided Chemical Engineering (Vol. 9, pp. 481–486). Elsevier.

    Google Scholar 

  • Reneaume, J. M., & Niclout, N. (2003). MINLP optimization of plate fin heat exchangers, Chemical and Biochemical Engineering Quarterly, 17(1), 65–76.

    Google Scholar 

  • Reneaume, J. M., Pingaud, H., & Niclout, N. (2000). Optimization of plate fin heat exchangers: a continuous formulation, Chemical Engineering Research and Design, 78(6), 849–859.

    Google Scholar 

  • Rohsenow WM and Hartnett JP. (1973) Handbook of Heat Transfer, McGraw-Hill, New York.

    Google Scholar 

  • Romero-Méndez R, Sen M, Yang KT and McClain R. (2000) ‘Effect of fin spacing on convection in a plate fin and tube heat exchanger’, International Journal of Heat and Mass Transfer, vol.43(1), 39–51.

    Article  Google Scholar 

  • Sadeghzadeha H, Ehyaeib MA and Rosen MA. (2015) ‘Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms’, Energy Conversion and Management, vol. 93, 84–91.

    Article  Google Scholar 

  • Saechan P and Wongwises S. (2008) ‘Optimal configuration of cross flow plate finned tube condenser based on the second law of thermodynamics’, International Journal of Thermal Science, vol. 47, 1473–1481.

    Google Scholar 

  • Åžahin AÅž, Kiliç B and Kiliç U. (2011) ‘Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm’, Energy Conversion and Management, vol. 52, 3356–3362.

    Article  Google Scholar 

  • Sanaye S and Hajabdollahi H. (2009) ‘Multi-objective optimization of rotary regenerator using genetic algorithm’, International Journal of Thermal Sciences, vol. 30(14–15), 1937–1945.

    Google Scholar 

  • Sanaye S and Hajabdollahi H. (2010) ‘Multi-objective optimization of shell and tube heat exchangers’, Applied Thermal Engineering, vol. 30, 1937–1945.

    Article  Google Scholar 

  • Sanaye S and Hajabdollahi H. (2010) ‘Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm’, Applied Energy, vol. 87, 1893–1902.

    Article  Google Scholar 

  • Sanaye S, Jafari S and Ghaebi H. (2008) ‘Optimum operational conditions of a rotary regenerator using genetic algorithm’, Energy and Buildings, vol. 40(9), 1637–1642.

    Article  Google Scholar 

  • Segundo EH, Amoroso AL, Mariani VC and dos Santos Coelho L. (2017) ‘Economic optimization design for shell-and-tube heat exchangers by a tsallis differential evolution’, Applied Thermal Engineering, vol. 111, 143–51.

    Article  Google Scholar 

  • Selbas R, Kizilkan O and Reppich M. (2006) ‘A new design approach for shell- and-tube heat exchangers using genetic algorithms from economic point of view’, Chemical Engineering and Processing, vol. 45, 268–275.

    Article  Google Scholar 

  • Shah RK and Bell KJ. (2000) Handbook of Thermal Engineering, CRC Press, Florida.

    Google Scholar 

  • Shah RK, and Sekulic P. (2003a) Fundamental of Heat Exchanger Design, John Wiley & Sons, New York.

    Google Scholar 

  • Shah RK, Sekulic P, (2003b) Fundamental of Heat Exchanger Design, Wiley, New York.

    Google Scholar 

  • Singh V, Abdelaziz O, Aute V and Radermacher R. (2011) ‘Simulation of air-to-refrigerant fin-and-tube heat exchanger with CFD-based air propagation’, International Journal of Refrigeration, vol. 34(8), 1883–97.

    Article  Google Scholar 

  • Skiepko T and Shah RK. (2004) ‘A comparison of rotary regenerator theory and experimental results for an air pre-heater for a thermal power plant’, Experimental Thermal and Fluid Science, vol. 28, 257–264.

    Article  Google Scholar 

  • Smith R. (2005) Chemical Process Design and Integration, Wiley, New York.

    Google Scholar 

  • Soltan BK, Saffar-Avval M and Damangir E. (2004) ‘Minimizing capital and operating costs of shell and tube condensers using optimum baffle spacing’, Applied Thermal Engineering, vol. 24, 2801–2810.

    Article  Google Scholar 

  • Taborek, J. (1998) ‘Shell-and-tube heat exchangers: single-phase flow’ in Handbook of Heat Exchanger Design (Ed. G. F. Hewitt), pp. 3.3.3.1–3.3.11.5 (Begell House, New York).

    Google Scholar 

  • Tang LH, Zeng M and Wang QW. (2009) ‘Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns’, Experimental Thermal and Fluid Science, vol. 33, 818–827.

    Google Scholar 

  • Turgut OE. (2016) ‘Hybrid Chaotic Quantum behaved Particle Swarm Optimization algorithm for thermal design of plate fin heat exchangers’, Applied Mathematical Modelling, vol. 40, 50–69.

    Google Scholar 

  • Wang CC, Fu WL and Chang CT. (1997) ‘Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers’, Experimental Thermal and Fluid Science, vol. 14(2),174–86.

    Article  Google Scholar 

  • Wang CC. (2000) ‘Recent progress on the air-side performance of fin-and-tube heat exchangers’, International Journal of Heat Exchangers, vol. 2, 57–84.

    Google Scholar 

  • Wang L and Sunden B. (2003) ‘Optimal design of plate heat exchangers with and without pressure drop specifications’, Applied Thermal Engineering, vol. 23, 295–311.

    Article  Google Scholar 

  • Wang Z and Li Y. (2015) ‘Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm’, Energy Conversation and Management, vol. 101, 126–135.

    Article  Google Scholar 

  • Wang Z, Li Y and Zhao M. (2015) ‘Experimental investigation on the thermal performance of multi-stream plate-fin heat exchanger based on genetic algorithm layer pattern design’, International Journal of Heat Mass Transfer, vol. 82, 510–520.

    Google Scholar 

  • Wen J, Yang H, Jian G, Tong X, Li K and Wang S. (2016) ‘Energy and cost optimization of shell and tube heat exchanger with helical baffles using Kriging meta-model based on MOGA’, International Journal of Heat and Mass Transfer, vol. 98, 29–39.

    Article  Google Scholar 

  • Wen J, Ynag H, Tong X, Li K, Wang S and Li Y. (2016) ‘Configuration parameters design and optimization for plate fin heat exchangers with serrated fin by multi-objective genetic algorithm’, Energy Conversation and Management, vol. 117, 482–489.

    Google Scholar 

  • Wen J, Yang H, Tong X, Li K, Wang S and Li Y. (2016) ‘Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm’, International Journal of Thermal Science, vol. 101, 116–125.

    Google Scholar 

  • Wildi-Tremblay P and Gosselin L. (2007) ‘Minimizing shell and tube heat exchanger cost with genetic algorithms and considering maintenance’, International Journal Energy Research, vol. 31, 867–885.

    Article  Google Scholar 

  • Wong JYQ, Sharma S and Rangaiah GP. (2016) ‘Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria’, Applied Thermal Engineering, vol. 93, 888–899.

    Article  Google Scholar 

  • Wu Z, Ding G, Wang K and Fukaya M. (2008) ‘Application of a genetic algorithm to optimize the refrigerant circuit of fin-and-tube heat exchangers for maximum heat transfer or shortest tube’, International Journal of Thermal Sciences, vol. 47(8), 985–97.

    Article  Google Scholar 

  • Wu Z, Roderick VN and Finn B. (2006) ‘Model-based analysis and simulation of regenerative heat wheel’, Energy and Buildings, vol. 38, 502–514.

    Google Scholar 

  • Xie GN, Chen QY, Tang LH, Zeng M and Wang QW. (2005) ‘Thermal design and comparison of two fin-and-tube heat exchangers’, In: Proceedings of 2nd Chinese Heat Transfer Technology, China. pp. 8–11.

    Google Scholar 

  • Xie GN, Sunden B and Wang QW. (2008) ‘Optimization of compact heat exchangers by a genetic algorithm’, Applied Thermal Engineering, vol. 28, 895–906.

    Article  Google Scholar 

  • Xie GN, Wang WQ and Sunden B. (2008a) ‘Application of a genetic algorithm for thermal design of fin-and-tube heat exchangers’, Heat Transfer Engineering, vol. 29(7), 597–607.

    Article  Google Scholar 

  • Yang DK, Lee KS and Song S. (2006b) ‘Fin spacing optimization of a fin-tube heat exchanger under frosting conditions’, International Journal of Heat and Mass Transfer, vol. 49(15), 2619–25.

    Article  MATH  Google Scholar 

  • Yin H and Ooka R. (2015) ‘Shape optimization of water-to-water plate-fin heat exchanger using computational fluid dynamics and genetic algorithm’, Applied Thermal Engineering, vol. 80, 310–318.

    Article  Google Scholar 

  • Yousefi M, Darus AN and Hooshyar D. (2015) ‘Multi-stage thermal-economical optimization of compact heat exchangers: a new evolutionary-based design approach for real-world problems’, Applied Thermal Engineering, vol. 83, 71–80.

    Article  Google Scholar 

  • Yousefi M, Darus AN and Mohammadi H. (2012) ‘An imperialist competitive algorithm for optimal design of plate-fin heat exchangers’, International Journal Heat and Mass Transfer, vol. 55, 3178–3185.

    Article  Google Scholar 

  • Yousefi M, Enayatifar R, and Darus AN. (2011) ‘Optimal design of plate-fin heat exchangers by a hybrid evolutionary algorithm’, International Communication in Heat and Mass Transfer, vol. 39, 258–263.

    Article  Google Scholar 

  • Yousefi M, Enayatifar R, Darus AN and Abdullah AH. (2012) ‘A robust learning based evolutionary approach for thermal-economic optimization of compact heat exchangers’, International Communication of Heat Mass Transfer, vol. 39, 1605–1615.

    Article  Google Scholar 

  • Yousefi M, Enayatifar R, Darus AN and Abdullah AH. (2013) ‘Optimization of plate-fin heat exchangers by an improved harmony search algorithm’, Applied Thermal Engineering, vol. 50, 877–885.

    Article  Google Scholar 

  • Zarea H, Kashkooli FM, Mehryan AM, Saffarian MR and Beherghani EN. (2014) ‘Optimal design of plate-fin heat exchangers by a Bees Algorithm’, Applied Thermal Engineering, vol. 69, 267–277.

    Article  Google Scholar 

  • Zhang L, Yang C and Zhou J. (2010) ‘A distributed parameter model and its application in optimizing the plate-fin heat exchanger based on the minimum entropy generation’, International Journal of Thermal Science, vol. 49, 1427–1436.

    Article  Google Scholar 

  • Zhang W, Chen L and Sun F. (2009) ‘Power and efficiency optimization for combined Brayton and inverse Brayton cycles’, Applied Thermal Engineering, vol. 29, 2885–2894.

    Article  Google Scholar 

  • Zhao M and Li Y. (2013) ‘An effective layer pattern optimization model for multi-stream plate-fin heat exchanger using genetic algorithm’, International Journal of Heat and Mass Transfer, vol. 60, 480–489.

    Article  Google Scholar 

  • Zhou Y, Zhu L, Yu J and Li Y. (2014) ‘Optimization of plate-fin heat exchangers by minimizing specific entropy generation rate’, International Journal of Heat and Mass Transfer, vol. 78, 942–946.

    Article  Google Scholar 

  • Zhua J and Zhang W. (2004) ‘Optimization design of plate heat exchangers (PHE) for geothermal district heating systems’, Geothermics, vol. 33, 337–347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek K. Patel .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, V.K., Savsani, V.J., Tawhid, M.A. (2019). Thermal Design and Optimization of Heat Exchangers. In: Thermal System Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-10477-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10477-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10476-4

  • Online ISBN: 978-3-030-10477-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics