Skip to main content

Future-Oriented Thinking and Activity in Mathematical Problem Solving

  • Chapter
  • First Online:
Mathematical Problem Solving

Part of the book series: ICME-13 Monographs ((ICME13Mo))

Abstract

The purpose of this chapter is to highlight the importance of “thinking ahead” in mathematical problem solving. This process, though seemingly central to the work of mathematicians, seems to be largely overlooked in the mathematics education literature. This chapter presents my recent attempts to characterize future-oriented processes in mathematical work and summarizes evidence of mathematicians engaging in such processes. The main new results presented here concern students’ future thinking in mathematical situations. Student participants’ work in problem situations was analysed through the lens of mathematical foresight. This analysis serves to deepen the mathematical foresight model and opens up a number of directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atance, C.M., & O’Neill, D.K. (2001). Episodic future thinking. Trends in Cognitive Science, 5(12), 533–539.

    Article  Google Scholar 

  • Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Science, 11, 49–57.

    Article  Google Scholar 

  • English, L., & Sriraman, B. (2010). Problem solving for the 21st century. In L. English & B. Sriraman (Eds.), Theories of mathematics education (pp. 263–290). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Galbraith, P., Stillman, G., & Brown, J. (2015). The primacy of ‘noticing’: A key to successful modelling. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical modelling and applications (pp. 83–94). New York: Springer.

    Google Scholar 

  • Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton: Princeton University Press.

    Google Scholar 

  • Hamilton, E. (2007). What changes are needed in the kind of problem solving situations where mathematical thinking is needed beyond school? In R. Lesh, E. Hamilton, & J. Kaput (Eds.), Foundations for the future in mathematics education (pp. 1–6). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching mathematical problem solving. In E. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lesh, R., & Zawojewski, J. S. (2007). Problem solving and modelling. In F. Lester (Ed.), The second handbook of research on mathematics teaching and learning (pp. 763–804). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Lester, F. K., & Cai, J. (2017). Can mathematical problem solving be taught? Preliminary answers from 30 years of research. In P. Felmer, E. Pehkonen, & J. Kilpatrick (Eds.), Posing and solving mathematical problems: Advances and new perspectives (pp. 117–135). Switzerland: Springer.

    Google Scholar 

  • Lester, F. K., & Kehle, P. E. (2003). From problem solving to modeling: The evolution of thinking about research on complex mathematical activity. In R. A. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 501–518). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Maciejewski, W. (2012). Resistance and relatedness on an evolutionary graph. Journal of the Royal Society, Interface, 9(68), 511–517.

    Article  Google Scholar 

  • Maciejewski, W. (2017). Mathematical knowledge and memories of mathematics. In B. Kaur, W. K. Ho, T. L. Toh, & B. H. Choy (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 209–216). Singapore: PME.

    Google Scholar 

  • Maciejewski, W., & Barton, B. (2016). Mathematical foresight: Thinking in the future to work in the present. For the Learning of Mathematics, 47(3), 31–37.

    Google Scholar 

  • Maciejewski, W., Roberts, R., & Addis, D. R. (2016). Episodic future thinking in mathematical situations. Episodic future thinking in mathematical situations. In C. Csikos, A. Rausch, & J. Szitányi (Eds.), Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 227–234). Szeged, Hungary: PME.

    Google Scholar 

  • Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically. Essex, UK: Pearson.

    Google Scholar 

  • Mayer, R. (1982). The psychology of mathematical problem solving. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving: Issues in research. The Franklin Institute: Philadelphia, PA.

    Google Scholar 

  • Niss, M. (2010). Modeling a crucial aspect of students’ mathematical modeling. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical competencies (pp. 43–59). New York: Springer.

    Chapter  Google Scholar 

  • Nowak, M. (2006). Evolutionary dynamics: Exploring the equations of life. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Poincaré, H. (1910). Mathematical creation. The Monist, 20(3), 321–335.

    Google Scholar 

  • Pólya, G. (1945). How to solve it. Garden City, NY: Doubleday.

    Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676–682.

    Article  Google Scholar 

  • Schacter, D. L. (2012). Adaptive constructive processes and the future of memory. American Psychologist, 67(8), 603–613.

    Article  Google Scholar 

  • Schacter, D. L., & Addis, D. R. (2007). The cognitive neuroscience of constructive memory: Remembering the past and imagining the future. Philosophical Transactions of the Royal Society B, 362, 773–786.

    Article  Google Scholar 

  • Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657–661.

    Article  Google Scholar 

  • Schacter, D. L., Addis, D. R., & Buckner, R. L. (2008). Episodic simulation of future events: Concepts, data, and applications. Annals of the New York Academy of Science, 1124, 39–60.

    Article  Google Scholar 

  • Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Cell: Neuron Review, 76(4), 677–694.

    Article  Google Scholar 

  • Schoenfeld, A. (1985). Mathematical problem solving. New York, NY: Academic Press.

    Google Scholar 

  • Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 334–370). New York, NY: Macmillan.

    Google Scholar 

  • Silver, E. (1985). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19–28.

    Google Scholar 

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169.

    Article  Google Scholar 

  • Taylor, S. E., Pham, L. B., Rivkin, I. D., & Armor, D. A. (1998). Harnessing the imagination. Mental simulation, self-regulation, and coping. American Psychologist, 53(4), 429–439.

    Article  Google Scholar 

  • Tulving, E. (1983). Elements of episodic memory. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wes Maciejewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maciejewski, W. (2019). Future-Oriented Thinking and Activity in Mathematical Problem Solving. In: Liljedahl, P., Santos-Trigo, M. (eds) Mathematical Problem Solving. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-030-10472-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10472-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10471-9

  • Online ISBN: 978-3-030-10472-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics