Combining Voice and Face Content in the Primate Temporal Lobe

  • Catherine Perrodin
  • Christopher I. PetkovEmail author
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 68)


The interactions of many social animals critically depend on identifying other individuals to approach or avoid. Recognizing specific individuals requires extracting and integrating cross-sensory indexical cues from richly informative communication signals such as voice and face content. Knowledge on how the brain processes faces and voices as unisensory or multisensory signals has grown; neurobiological insights are now available not only from human neuroimaging data but also from comparative neuroimaging studies in nonhuman animals, which together identify the correspondences that can be made between brain processes in humans and other species. These advances have also had the added benefit of establishing animal models in which neuronal processes and pathways are interrogated at finer neurobiological scales than possible in humans. This chapter overviews the latest insights on neuronal representations of voice and face content, including information on sensory convergence sites and pathways that combine multisensory signals in the primate temporal lobe. The information synthesized here leads to a conceptual model whereby the sensory integration of voice and face content depends on temporal lobe convergence sites, which are a midway processing stage and a conduit between audiovisual sensory-processing streams and the frontal cortex.


Auditory Communication Comparative Face areas Functional magnetic resonance imaging Neurons Neurophysiology Oscillations Spikes Superior-temporal sulcus Visual Voice areas 



We thank Christoph Kayser and Nikos Logothetis for useful discussion, support, and encouragement. This work was supported by the Max Planck Society, Wellcome Trust Investigator Award WT092606AIA to Christopher I. Petkov, Sir Henry Wellcome Fellowship 110238/Z/15/Z to Catherine Perrodin, the European Research Council to Christopher I. Petkov (MECHIDENT), and Biotechnology and Biological Sciences Research Council BB/J009849/1 to Christopher I. Petkov jointly with Q. Vuong.

Compliance with Ethics Requirements

Catherine Perrodin declares that she has no conflict of interest.Christopher I. Petkov declares that he has no conflict of interest.


  1. Andics, A., Gácsi, M., Faragó, T., Kis, A., & Miklósi, Á. (2014). Voice-sensitive regions in the dog and human brain are revealed by comparative fMRI. Current Biology, 24(5), 574–578.Google Scholar
  2. Aparicio, P. L., Issa, E. B., & DiCarlo, J. J. (2016). Neurophysiological organization of the middle face patch in macaque inferior temporal cortex. The Journal of Neuroscience, 36(50), 12729–12745.Google Scholar
  3. Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J.-M., Oostenveld, R., Dowdall, J. R., De Weerd, P., Kennedy, H., & Fries, P. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 85(2), 390–401.Google Scholar
  4. Beauchamp, M. S., Argall, B. D., Bodurka, J., Duyn, J. H., & Martin, A. (2004). Unraveling multisensory integration: Patchy organization within human STS multisensory cortex. Nature Neuroscience, 7(11), 1190–1192.Google Scholar
  5. Belin, P., & Zatorre, R. J. (2003). Adaptation to speaker’s voice in right anterior temporal lobe. Neuroreport, 14(16), 2105–2109.Google Scholar
  6. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Nature, 403(6767), 309–312.Google Scholar
  7. Belin, P., Fecteau, S., & Bedard, C. (2004). Thinking the voice: Neural correlates of voice perception. Trends in Cognitive Sciences, 8(3), 129–135.Google Scholar
  8. Bendor, D., & Wang, X. (2007). Differential neural coding of acoustic flutter within primate auditory cortex. Nature Neuroscience, 10(6), 763–771.Google Scholar
  9. Benevento, L. A., Fallon, J., Davis, B. J., & Rezak, M. (1977). Auditory-visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Experimental Neurology, 57(3), 849–872.Google Scholar
  10. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796.Google Scholar
  11. Bizley, J. K., Nodal, F. R., Bajo, V. M., Nelken, I., & King, A. J. (2007). Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cerebral Cortex, 17(9), 2172–2189.Google Scholar
  12. Bizley, J. K., Walker, K. M. M., Silverman, B. W., King, A. J., & Schnupp, J. W. H. (2009). Interdependent encoding of pitch, timbre, and spatial location in auditory cortex. The Journal of Neuroscience, 29(7), 2064–2075.Google Scholar
  13. Bizley, J. K., Jones, G. P., & Town, S. M. (2016). Where are multisensory signals combined for perceptual decision-making? Current Opinion in Neurobiology, 40, 31–37.Google Scholar
  14. Blank, H., Anwander, A., & von Kriegstein, K. (2011). Direct structural connections between voice-and face-recognition areas. The Journal of Neuroscience, 31(36), 12906–12915.Google Scholar
  15. Brennan, P. A. (2004). The nose knows who’s who: Chemosensory individuality and mate recognition in mice. Hormones and Behavior, 46(3), 231–240.Google Scholar
  16. Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77, 305–327.Google Scholar
  17. Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology, 46(2), 369–384.Google Scholar
  18. Budinger, E., Heil, P., Hess, A., & Scheich, H. (2006). Multisensory processing via early cortical stages: Connections of the primary auditory cortical field with other sensory systems. Neuroscience, 143(4), 1065–1083.Google Scholar
  19. Campanella, S., & Belin, P. (2007). Integrating face and voice in person perception. Trends in Cognitive Sciences, 11(12), 535–543.Google Scholar
  20. Cappe, C., & Barone, P. (2005). Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. European Journal of Neuroscience, 22(11), 2886–2902.Google Scholar
  21. Chan, A. M., Baker, J. M., Eskandar, E., Schomer, D., Ulbert, I., Marinkovic, K., Cash, S. S., & Halgren, E. (2011). First-pass selectivity for semantic categories in human anteroventral temporal lobe. The Journal of Neuroscience, 31(49), 18119–18129.Google Scholar
  22. Chandrasekaran, C., & Ghazanfar, A. A. (2009). Different neural frequency bands integrate faces and voices differently in the superior temporal sulcus. Journal of Neurophysiology, 101(2), 773–788.Google Scholar
  23. Chandrasekaran, C., Trubanova, A., Stillittano, S., Caplier, A., & Ghazanfar, A. A. (2009). The natural statistics of audiovisual speech. PLoS Computational Biology, 5(7), e1000436.Google Scholar
  24. Chen, A., Gu, Y., Liu, S., DeAngelis, G. C., & Angelaki, D. E. (2016). Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception. The Journal of Neuroscience, 36(13), 3789–3798.Google Scholar
  25. Cohen, L., Rothschild, G., & Mizrahi, A. (2011). Multisensory integration of natural odors and sounds in the auditory cortex. Neuron, 72(2), 357–369.Google Scholar
  26. Creutzfeldt, O., Hellweg, F. C., & Schreiner, C. (1980). Thalamocortical transformation of responses to complex auditory stimuli. Experimental Brain Research, 39(1), 87–104.Google Scholar
  27. Dahl, C. D., Logothetis, N. K., & Kayser, C. (2009). Spatial organization of multisensory responses in temporal association cortex. The Journal of Neuroscience, 29(38), 11924–11932.Google Scholar
  28. Dahl, C. D., Logothetis, N. K., & Kayser, C. (2010). Modulation of visual responses in the superior temporal sulcus by audio-visual congruency. Frontiers in Integrative Neuroscience, 4, 10.Google Scholar
  29. Damasio, A. R. (1989). The brain binds entities and events by multiregional activation from convergence zones. Neural Computation, 1(1), 123–132.Google Scholar
  30. Fecteau, S., Armony, J. L., Joanette, Y., & Belin, P. (2004). Is voice processing species-specific in human auditory cortex? An fMRI study. NeuroImage, 23(3), 840–848.Google Scholar
  31. Fecteau, S., Armony, J. L., Joanette, Y., & Belin, P. (2005). Sensitivity to voice in human prefrontal cortex. Journal of Neurophysiology, 94(3), 2251–2254.Google Scholar
  32. Fetsch, C. R., Pouget, A., DeAngelis, G. C., & Angelaki, D. E. (2012). Neural correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience, 15(1), 146–154.Google Scholar
  33. Fitch, W. T. (2000). The evolution of speech: A comparative review. Trends in Cognitive Sciences, 4(7), 258–267.Google Scholar
  34. Formisano, E., De Martino, F., Bonte, M., & Goebel, R. (2008). “Who” is saying “what”? Brain-based decoding of human voice and speech. Science, 322(5903), 970–973.Google Scholar
  35. Freiwald, W. A., & Tsao, D. Y. (2010). Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science, 330(6005), 845–851.Google Scholar
  36. Frey, S., Kostopoulos, P., & Petrides, M. (2004). Orbitofrontal contribution to auditory encoding. NeuroImage, 22(3), 1384–1389.Google Scholar
  37. Galaburda, A. M., & Pandya, D. N. (1983). The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. Journal of Comparative Neurology, 221(2), 169–184.Google Scholar
  38. Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10(6), 278–285.Google Scholar
  39. Ghazanfar, A. A., & Takahashi, D. Y. (2014). The evolution of speech: Vision, rhythm, cooperation. Trends in Cognitive Sciences, 18(10), 543–553.Google Scholar
  40. Ghazanfar, A. A., Maier, J. X., Hoffman, K. L., & Logothetis, N. K. (2005). Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. The Journal of Neuroscience, 25(20), 5004–5012.Google Scholar
  41. Ghitza, O. (2011). Linking speech perception and neurophysiology: Speech decoding guided by cascaded oscillators locked to the input rhythm. Frontiers in Psychology, 2, 130.Google Scholar
  42. Gifford, G. W., 3rd, MacLean, K. A., Hauser, M. D., & Cohen, Y. E. (2005). The neurophysiology of functionally meaningful categories: Macaque ventrolateral prefrontal cortex plays a critical role in spontaneous categorization of species-specific vocalizations. Journal of Cognitive Neuroscience, 17(9), 1471–1482.Google Scholar
  43. Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517.Google Scholar
  44. Gire, D. H., Whitesell, J. D., Doucette, W., & Restrepo, D. (2013). Information for decision-making and stimulus identification is multiplexed in sensory cortex. Nature Neuroscience, 16(8), 991–993.Google Scholar
  45. Griffiths, T. D., Warren, J. D., Scott, S. K., Nelken, I., & King, A. J. (2004). Cortical processing of complex sound: A way forward? Trends in Neurosciences, 27(4), 181–185.Google Scholar
  46. Gross, J., Hoogenboom, N., Thut, G., Schyns, P., Panzeri, S., Belin, P., & Garrod, S. (2013). Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biology, 11(12), e1001752.Google Scholar
  47. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1998). Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology, 394(4), 475–495.Google Scholar
  48. Hasselmo, M. E., Rolls, E. T., & Baylis, G. C. (1989). The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behavioural Brain Research, 32(3), 203–218.Google Scholar
  49. Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences of the United States of America, 109(49), 20095–20100.Google Scholar
  50. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.Google Scholar
  51. Kaas, J. H., & Hackett, T. A. (1998). Subdivisions of auditory cortex and levels of processing in primates. Audiology and Neuro-Otology, 3(2-3), 73–85.Google Scholar
  52. Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11793–11799.Google Scholar
  53. Kadohisa, M., & Wilson, D. A. (2006). Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15206–15211.Google Scholar
  54. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17(11), 4302–4311.Google Scholar
  55. Kayser, C., Petkov, C. I., & Logothetis, N. K. (2008). Visual modulation of neurons in auditory cortex. Cerebral Cortex, 18(7), 1560–1574.Google Scholar
  56. Keil, J., Muller, N., Hartmann, T., & Weisz, N. (2014). Prestimulus beta power and phase synchrony influence the sound-induced flash illusion. Cerebral Cortex, 24(5), 1278–1288.Google Scholar
  57. Kikuchi, Y., Horwitz, B., & Mishkin, M. (2010). Hierarchical auditory processing directed rostrally along the monkey’s supratemporal plane. The Journal of Neuroscience, 30(39), 13021–13030.Google Scholar
  58. King, A. J., & Nelken, I. (2009). Unraveling the principles of auditory cortical processing: Can we learn from the visual system? Nature Neuroscience, 12(6), 698–701.Google Scholar
  59. Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007). Individual faces elicit distinct response patterns in human anterior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20600–20605.Google Scholar
  60. Lakatos, P., Chen, C. M., O’Connell, M. N., Mills, A., & Schroeder, C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron, 53(2), 279–292.Google Scholar
  61. Logothetis, N. K., Guggenberger, H., Peled, S., & Pauls, J. (1999). Functional imaging of the monkey brain. Nature Neuroscience, 2(6), 555–562.Google Scholar
  62. Matsui, T., Tamura, K., Koyano, K. W., Takeuchi, D., Adachi, Y., Osada, T., & Miyashita, Y. (2011). Direct comparison of spontaneous functional connectivity and effective connectivity measured by intracortical microstimulation: An fMRI study in macaque monkeys. Cerebral Cortex, 21(10), 2348–2356.Google Scholar
  63. McGrath, M., & Summerfield, Q. (1985). Intermodal timing relations and audio-visual speech recognition by normal-hearing adults. The Journal of the Acoustical Society of America, 77(2), 678–685.Google Scholar
  64. McLaren, D. G., Kosmatka, K. J., Oakes, T. R., Kroenke, C. D., Kohama, S. G., Matochik, J. A., Ingram, D. K., & Johnson, S. C. (2009). A population-average MRI-based atlas collection of the rhesus macaque. NeuroImage, 45(1), 52–59.Google Scholar
  65. Mercier, M. R., Foxe, J. J., Fiebelkorn, I. C., Butler, J. S., Schwartz, T. H., & Molholm, S. (2013). Auditory-driven phase reset in visual cortex: Human electrocorticography reveals mechanisms of early multisensory integration. NeuroImage, 79, 19–29.Google Scholar
  66. Miller, C. T., & Cohen, Y. E. (2010). Vocalizations as auditory objects: Behavior and neurophysiology. In M. L. Platt & A. A. Ghazanfar (Eds.), Primate neuroethology (pp. 237–255). New York: Oxford University Press.Google Scholar
  67. Mizrahi, A., Shalev, A., & Nelken, I. (2014). Single neuron and population coding of natural sounds in auditory cortex. Current Opinion in Neurobiology, 24, 103–110.Google Scholar
  68. Morin, E. L., Hadj-Bouziane, F., Stokes, M., Ungerleider, L. G., & Bell, A. H. (2014). Hierarchical encoding of social cues in primate inferior temporal cortex. Cerebral Cortex, 25(9), 3036–3045.Google Scholar
  69. Okabe, S., Nagasawa, M., Kihara, T., Kato, M., Harada, T., Koshida, N., Mogi, K., & Kikusui, T. (2013). Pup odor and ultrasonic vocalizations synergistically stimulate maternal attention in mice. Behavioural Neuroscience, 127(3), 432–438.Google Scholar
  70. Osmanski, M. S., & Wang, X. (2015). Behavioral dependence of auditory cortical responses. Brain Topography, 28(3), 365–378.Google Scholar
  71. Pandya, D. N., Hallett, M., & Kmukherjee, S. K. (1969). Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey. Brain Research, 14(1), 49–65.Google Scholar
  72. Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Experimental Brain Research, 47(3), 329–342.Google Scholar
  73. Perrodin, C., Kayser, C., Logothetis, N. K., & Petkov, C. I. (2011). Voice cells in the primate temporal lobe. Current Biology, 21(16), 1408–1415.Google Scholar
  74. Perrodin, C., Kayser, C., Logothetis, N. K., & Petkov, C. I. (2014). Auditory and visual modulation of temporal lobe neurons in voice-sensitive and association cortices. The Journal of Neuroscience, 34(7), 2524–2537.Google Scholar
  75. Perrodin, C., Kayser, C., Logothetis, N. K., & Petkov, C. I. (2015a). Natural asynchronies in audiovisual communication signals regulate neuronal multisensory interactions in voice-sensitive cortex. Proceedings of the National Academy of Sciences of the United States of America, 112(1), 273–278.Google Scholar
  76. Perrodin, C., Kayser, C., Abel, T. J., Logothetis, N. K., & Petkov, C. I. (2015b). Who is that? Brain networks and mechanisms for identifying individuals. Trends in Cognitive Sciences, 19(12), 783–796.Google Scholar
  77. Petkov, C. I., Kayser, C., Steudel, T., Whittingstall, K., Augath, M., & Logothetis, N. K. (2008). A voice region in the monkey brain. Nature Neuroscience, 11(3), 367–374.Google Scholar
  78. Petkov, C. I., Kikuchi, Y., Milne, A. E., Mishkin, M., Rauschecker, J. P., & Logothetis, N. K. (2015). Different forms of effective connectivity in primate frontotemporal pathways. Nature Communications, 6.
  79. Petrides, M., & Pandya, D. N. (1988). Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. Journal of Comparative Neurology, 273(1), 52–66.Google Scholar
  80. Plakke, B., & Romanski, L. M. (2014). Auditory connections and functions of prefrontal cortex. Frontiers in Neuroscience, 8, 199.Google Scholar
  81. Plakke, B., Diltz, M. D., & Romanski, L. M. (2013). Coding of vocalizations by single neurons in ventrolateral prefrontal cortex. Hearing Research, 305, 135–143.Google Scholar
  82. Rauschecker, J. P. (1998). Parallel processing in the auditory cortex of primates. Audiology and Neurotology, 3(2-3), 86–103.Google Scholar
  83. Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 97, 11800–11806.Google Scholar
  84. Recanzone, G. H. (2008). Representation of con-specific vocalizations in the core and belt areas of the auditory cortex in the alert macaque monkey. The Journal of Neuroscience, 28(49), 13184–13193.Google Scholar
  85. Remedios, R., Logothetis, N. K., & Kayser, C. (2009). An auditory region in the primate insular cortex responding preferentially to vocal communication sounds. The Journal of Neuroscience, 29(4), 1034–1045.Google Scholar
  86. Romanski, L. M. (2007). Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex. Cerebral Cortex, 17(Suppl. 1), i61–i69.Google Scholar
  87. Romanski, L. M. (2012). Integration of faces and vocalizations in ventral prefrontal cortex: Implications for the evolution of audiovisual speech. Proceedings of the National Academy of Sciences of the United States of America, 109(Suppl. 1), 10717–10724.Google Scholar
  88. Romanski, L. M., Bates, J. F., & Goldman-Rakic, P. S. (1999a). Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 403(2), 141–157.Google Scholar
  89. Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999b). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131–1136.Google Scholar
  90. Romanski, L. M., Averbeck, B. B., & Diltz, M. (2005). Neural representation of vocalizations in the primate ventrolateral prefrontal cortex. Journal of Neurophysiology, 93(2), 734–747.Google Scholar
  91. Russ, B. E., Ackelson, A. L., Baker, A. E., & Cohen, Y. E. (2008). Coding of auditory-stimulus identity in the auditory non-spatial processing stream. Journal of Neurophysiology, 99(1), 87–95.Google Scholar
  92. Sadagopan, S., Temiz-Karayol, N. Z., & Voss, H. U. (2015). High-field functional magnetic resonance imaging of vocalization processing in marmosets. Scientific Reports, 5, 10950.Google Scholar
  93. Saleem, K. S., & Logothetis, N. K. (2007). A combined MRI and histology: Atlas of the rhesus monkey brain in stereotaxic coordinates. London: Academic.Google Scholar
  94. Schroeder, C. E., & Foxe, J. J. (2002). The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Cognitive Brain Research, 14(1), 187–198.Google Scholar
  95. Schroeder, C. E., Smiley, J., Fu, K. G., McGinnis, T., O'Connell, M. N., & Hackett, T. A. (2003). Anatomical mechanisms and functional implications of multisensory convergence in early cortical processing. International Journal of Psychophysiology, 50(1-2), 5–17.Google Scholar
  96. Schroeder, C. E., Lakatos, P., Kajikawa, Y., Partan, S., & Puce, A. (2008). Neuronal oscillations and visual amplification of speech. Trends in Cognitive Sciences, 12(3), 106–113.Google Scholar
  97. Seltzer, B., & Pandya, D. N. (1989). Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. Journal of Comparative Neurology, 281(1), 97–113.Google Scholar
  98. Seltzer, B., & Pandya, D. N. (1994). Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study. Journal of Comparative Neurology, 343(3), 445–463.Google Scholar
  99. Sergent, J., Ohta, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain, 115(1), 15–36.Google Scholar
  100. Seyfarth, R. M., & Cheney, D. L. (2014). The evolution of language from social cognition. Current Opinion in Neurobiology, 28, 5–9.Google Scholar
  101. Slutsky, D. A., & Recanzone, G. H. (2001). Temporal and spatial dependency of the ventriloquism effect. Neuroreport, 12(1), 7–10.Google Scholar
  102. Smith, D. R., & Patterson, R. D. (2005). The interaction of glottal-pulse rate and vocal-tract length in judgements of speaker size, sex, and age. The Journal of the Acoustical Society of America, 118(5), 3177–3186.Google Scholar
  103. Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255–266.Google Scholar
  104. Strauss, A., Henry, M. J., Scharinger, M., & Obleser, J. (2015). Alpha phase determines successful lexical decision in noise. The Journal of Neuroscience, 35(7), 3256–3262.Google Scholar
  105. Sugihara, T., Diltz, M. D., Averbeck, B. B., & Romanski, L. M. (2006). Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex. The Journal of Neuroscience, 26(43), 11138–11147.Google Scholar
  106. Ten Oever, S., & Sack, A. T. (2015). Oscillatory phase shapes syllable perception. Proceedings of the National Academy of Sciences of the United States of America, 112(52), 15833–15837.Google Scholar
  107. Thorne, J. D., & Debener, S. (2014). Look now and hear what's coming: On the functional role of cross-modal phase reset. Hearing Research, 307, 144–152.Google Scholar
  108. Thut, G., Miniussi, C., & Gross, J. (2012). The functional importance of rhythmic activity in the brain. Current Biology, 22(16), R658–R663.Google Scholar
  109. Tian, B., Reser, D., Durham, A., Kustov, A., & Rauschecker, J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science, 292(5515), 290–293.Google Scholar
  110. Tsao, D. Y., & Livingstone, M. S. (2008). Mechanisms of face perception. Annual Review of Neuroscience, 31, 411–437.Google Scholar
  111. Tsao, D. Y., Freiwald, W. A., Tootell, R. B., & Livingstone, M. S. (2006). A cortical region consisting entirely of face-selective cells. Science, 311(5761), 670–674.Google Scholar
  112. Tsao, D. Y., Schweers, N., Moeller, S., & Freiwald, W. A. (2008). Patches of face-selective cortex in the macaque frontal lobe. Nature Neuroscience, 11(8), 877–879.Google Scholar
  113. Turesson, H. K., Logothetis, N. K., & Hoffman, K. L. (2012). Category-selective phase coding in the superior temporal sulcus. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19438–19443.Google Scholar
  114. van Atteveldt, N., Murray, M. M., Thut, G., & Schroeder, C. E. (2014). Multisensory integration: Flexible use of general operations. Neuron, 81(6), 1240–1253.Google Scholar
  115. von Kriegstein, K., Eger, E., Kleinschmidt, A., & Giraud, A. L. (2003). Modulation of neural responses to speech by directing attention to voices or verbal content. Cognitive Brain Research, 17(1), 48–55.Google Scholar
  116. von Kriegstein, K., Kleinschmidt, A., Sterzer, P., & Giraud, A. L. (2005). Interaction of face and voice areas during speaker recognition. Journal of Cognitive Neuroscience, 17(3), 367–376.Google Scholar
  117. Walker, K. M., Bizley, J. K., King, A. J., & Schnupp, J. W. (2011). Multiplexed and robust representations of sound features in auditory cortex. The Journal of Neuroscience, 31(41), 14565–14576.Google Scholar
  118. Watson, R., Latinus, M., Charest, I., Crabbe, F., & Belin, P. (2014). People-selectivity, audiovisual integration and heteromodality in the superior temporal sulcus. Cortex, 50, 125–136.Google Scholar
  119. Werner, S., & Noppeney, U. (2010). Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization. The Journal of Neuroscience, 30(7), 2662–2675.Google Scholar
  120. Yau, J. M., Deangelis, G. C., & Angelaki, D. E. (2015). Dissecting neural circuits for multisensory integration and crossmodal processing. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1677), 20140203.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Behavioural Neuroscience, University College LondonLondonUK
  2. 2.Institute of Neuroscience, Newcastle University Medical SchoolNewcastle upon TyneUK

Personalised recommendations