Skip to main content

Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes

  • Chapter
  • First Online:
Applications of Ion Exchange Materials in the Environment

Abstract

Clean water supplies are vital for industry, agriculture, and energy production. However, the water pollution issue is becoming more serious due to ever-increasing wastewater discharges from the industries into the environment. As the freshwater resource is limited, it is extremely crucial to reuse the wastewater after it has been treated to remove the heavy metal ions and other organic pollutants, which is believed to be the only way to find the new water resource. In view of the significance of treatment of wastewater contaminants, various remediation technologies are proposed and developed for efficient removal of heavy metal ions, including ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, adsorption, electrodialysis method, and fuel cell method. This chapter starts with a brief introduction of heavy metals, which are chromium, nickel, copper, zinc, cadmium, mercury, and lead. Then both physical treatment and chemical treatment are summarized. Finally, the remaining challenges and future perspectives are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAEM:

Alkaline anion exchange membrane

AC:

Ativated carbon

AFM:

Atomic force microscope

AMAH:

2-acrylamido-2-methylpropane sulfonic acid based hydrogel

APTES:

Aminopropyltriethoxysilane

BET:

Brunauer–Emmett–Teller

BSA:

Bovine serum albumin

CdS:

Cadmium sulfide

CEM:

Cation exchange membrane

CPANM:

Chitosan/poly(ethylene oxide)/activated carbon (AC) nanofibrous membrane

CPF:

Chitosan/PEO fiber

EDA:

Ethylenediamine

FTIR:

Fourier transform infrared

GO:

Graphene oxide

HFO:

Hydrous ferric oxide

HMO:

Hydrous manganese dioxide

HNT:

Halloysite nanotube

HPEI:

Hyperbranched polyethylenimine

IEM:

Ion exchange membrane

MMM:

Mixed matrix membrane

MOF:

Metal–organic framework

NP:

Nanoparticle

PA:

Polyamide

PANI:

Polyaniline

PDA:

Polydopamine

PEO:

Poly(ethylene oxide)

PES:

Polyethersulfone

PPy:

Polypyrrole

PSf:

Polysulfone

PVA:

Polyvinyl alcohol

PVC:

Polyvinyl chloride

PVDF:

Polyvinylidene fluoride

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

TFC:

Thin-film composite

UCrFC:

Urine/Cr(VI) fuel cell

XRD:

X-ray diffractor

References

  1. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5(3):2782–2799

    Article  CAS  Google Scholar 

  2. http://www.wri.org/our-work/topics/water

  3. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  Google Scholar 

  4. Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Coll Interface Sci 201:68–93

    Article  Google Scholar 

  5. Srivastava N, Majumder C (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8

    Article  CAS  Google Scholar 

  6. Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44(1):19–41

    Article  CAS  Google Scholar 

  7. Boamah PO, Huang Y, Hua M, Zhang Q, Wu J, Onumah J, Sam-Amoah LK, Boamah PO (2015) Sorption of heavy metal ions onto carboxylate chitosan derivatives—a mini-review. Ecotoxicol Environ Saf 116:113–120

    Article  CAS  Google Scholar 

  8. Ahmed MJK, Ahmaruzzaman M (2016) A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J Water Process Eng 10:39–47

    Article  Google Scholar 

  9. Nordberg G, Fowler B, Nordberg M, Friberg L (2007) Handbook of the toxicology of metals, 3rd edn. Academic, London

    Google Scholar 

  10. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  11. Demim S, Drouiche N, Aouabed A, Benayad, T, Dendene-Badache, O, Semsari S (2013) Cadmium and nickel: assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba. Ecol Eng, 61:426–435

    Article  Google Scholar 

  12. Miretzky P, Cirelli AF (2010) Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater 180(1–3):1–19

    Article  CAS  Google Scholar 

  13. Hu J, Chen C, Zhu X, Wang X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162(2–3):1542–1550

    CAS  Google Scholar 

  14. Yang S, Li J, Shao D, Hu J, Wang X (2009) Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater 166(1):109–116

    Article  CAS  Google Scholar 

  15. Mobasherpour I, Salahi E, Ebrahimi M (2012) Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: equilibrium and kinetic processes. Res Chem Intermed 38(9):2205–2222

    Article  CAS  Google Scholar 

  16. Malamis S, Katsou E (2013) A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms. J Hazard Mater 252:428–461

    Article  Google Scholar 

  17. Awual MR, Ismael M, Khaleque MA, Yaita T (2014) Ultra-trace copper (II) detection and removal from wastewater using novel meso-adsorbent. J Ind Eng Chem 20(4):2332–2340

    Article  CAS  Google Scholar 

  18. Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468:1014–1027

    Article  Google Scholar 

  19. Cristian P, Violeta P, Anita-Laura R, Raluca I, Alexandrescu E, Andrei S, Daniela IE, Raluca MA, Cristina M, Ioana CA (2015) Removal of zinc ions from model wastewater system using bicopolymer membranes with fumed silica. J Water Process Eng 8:1–10

    Article  Google Scholar 

  20. Chen M, Chen R, Zhu X, Liao Q, An L, Ye D, Zhou Y, He X, Zhang W (2017) A membrane electrode assembled photoelectrochemical cell with a solar-responsive cadmium sulfide-zinc sulfide-titanium dioxide/mesoporous silica photoanode. J Power Sources 371:96–105

    Article  CAS  Google Scholar 

  21. Lee CH, Hsi CS (2002) Recycling of scrap cathode ray tubes. Environ Sci Technol 36(1):69–75

    Article  CAS  Google Scholar 

  22. Filipič M (2012) Mechanisms of cadmium induced genomic instability. Mutat Res/Fundam Mol Mech Mutagen 733(1):69–77

    Article  Google Scholar 

  23. Kumari S, Chauhan GS (2014) New cellulose–lysine schiff-base-based sensor–adsorbent for mercury ions. ACS Appl Mater Interfaces 6(8):5908–5917

    Article  CAS  Google Scholar 

  24. Windham-Myers L, Fleck JA, Ackerman JT, Marvin-DiPasquale M, Stricker CA, Heim WA, Bachand PA, Eagles-Smith CA, Gill G, Stephenson M (2014) Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study. Sci Total Environ 484:221–231

    Article  CAS  Google Scholar 

  25. Malar S, Sahi SV, Favas PJ, Venkatachalam P. (2015) Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ Sci Poll Res 22(6):4597–4608

    Article  Google Scholar 

  26. Li P, Feng X, Qiu G, Shang L, Li Z (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168(2–3):591–601

    Article  CAS  Google Scholar 

  27. Acharya J, Sahu J, Mohanty C, Meikap B (2009) Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem Eng J 149(1–3):249–262

    Article  CAS  Google Scholar 

  28. Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  29. Cechinel MAP, de Souza AAU (2014) Study of lead(II) adsorption onto activated carbon originating from cow bone. J Clean Prod 65:342–349

    Article  CAS  Google Scholar 

  30. Sun J, Hu C, Tong T, Zhao K, Qu J, Liu H, Elimelech M (2017) Performance and mechanisms of ultrafiltration membrane fouling mitigation by coupling coagulation and applied electric field in a novel electrocoagulation membrane reactor. Environ Sci Technol 51(15):8544–8551

    Article  CAS  Google Scholar 

  31. Daraei P, Madaeni SS, Ghaemi N, Salehi E, Khadivi MA, Moradian R, Astinchap B (2012) Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. J Membr Sci 415–416:250–259

    Article  Google Scholar 

  32. Gohari RJ, Lau WJ, Matsuura T, Halakoo E, Ismail AF (2013) Adsorptive removal of Pb(II) from aqueous solution by novel PES/HMO ultrafiltration mixed matrix membrane. Sep Purif Technol 120:59–68

    Article  Google Scholar 

  33. Ghaemi N, Daraei P (2016) Enhancement in copper ion removal by PPy@Al2O3 polymeric nanocomposite membrane. J Ind Eng Chem 40:26–33

    Article  CAS  Google Scholar 

  34. Ghaemi N (2016) A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles. Appl Surf Sci 364:221–228

    Article  CAS  Google Scholar 

  35. Mukherjee R, Bhunia P, De S (2016) Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem Eng J 292:284–297

    Article  CAS  Google Scholar 

  36. Abdullah N, Gohari RJ, Yusof N, Ismail AF, Juhana J, Lau WJ, Matsuura T (2016) Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: preparation, characterization and its adsorptive removal of lead (II) from aqueous solution. Chem Eng J 289:28–37

    Article  CAS  Google Scholar 

  37. Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Haroon H, Mahmood Q (2013) Waste biomass adsorbents for copper removal from industrial wastewater—a review. J Hazard Mater 263:322–333

    Article  CAS  Google Scholar 

  38. Zhang Y, Zhang S, Chung TS (2015) Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ Sci Technol 49(16):10235–10242

    Article  CAS  Google Scholar 

  39. Ghaemi N, Madaeni SS, Daraei P, Rajabi H, Zinadini S, Alizadeh A, Heydari R, Beygzadeh M, Ghouzivand S (2015) Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe3O4 nanoparticles. Chem Eng J 263:101–112

    Article  CAS  Google Scholar 

  40. Bolisetty S, Mezzenga R (2016) Amyloid-carbon hybrid membranes for universal water purification. Nat Nanotechnol 11(4):365–371

    Article  CAS  Google Scholar 

  41. Zeng G, He Y, Zhan Y, Zhang L, Pan Y, Zhang C, Yu Z (2016) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J Hazard Mater 317:60–72

    Article  CAS  Google Scholar 

  42. Habiba U, Afifi AM, Salleh A, Ang BC (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr(6+), Fe(3+) and Ni(2+). J Hazard Materi 322(Part A):182–194

    Article  CAS  Google Scholar 

  43. Rao Z, Feng K, Tang B, Wu P (2017) Surface decoration of amino-functionalized metal-organic framework/graphene oxide composite onto polydopamine-coated membrane substrate for highly efficient heavy metal removal. ACS Appl Mater Interfaces 9(3):2594–2605

    Article  CAS  Google Scholar 

  44. Meschke K, Hansen N, Hofmann R, Haseneder R, Repke JU (2018) Characterization and performance evaluation of polymeric nanofiltration membranes for the separation of strategic elements from aqueous solutions. J Membr Sci 546:246–257

    Article  CAS  Google Scholar 

  45. Meschke K, Daus B, Haseneder R, Repke JU (2017) Strategic elements from leaching solutions by nanofiltration–Influence of pH on separation performance. Sep Purif Technol 184:264–274

    Article  CAS  Google Scholar 

  46. Li Y, Xu Z, Liu S, Zhang J, Yang X (2017) Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes. Comput Mater Sci 139:65–74

    Article  CAS  Google Scholar 

  47. Petrinic I, Korenak J, Povodnik D, Hélix-Nielsen C (2015) A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry. J Clean Prod 101:292–300

    Article  CAS  Google Scholar 

  48. You S, Lu J, Tang CY, Wang X (2017) Rejection of heavy metals in acidic wastewater by a novel thin-film inorganic forward osmosis membrane. Chem Eng J 320:532–538

    Article  CAS  Google Scholar 

  49. Cui Y, Ge Q, Liu XY, Chung TS (2014) Novel forward osmosis process to effectively remove heavy metal ions. J Membr Sci 467:188–194

    Article  CAS  Google Scholar 

  50. Zhao X, Liu C (2018) Efficient removal of heavy metal ions based on the optimized dissolution-diffusion-flow forward osmosis process. Chem Eng J 334:1128–1134

    Article  CAS  Google Scholar 

  51. Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157(2–3):220–229

    Article  CAS  Google Scholar 

  52. Li X, Zhou H, Wu W, Wei S, Xu Y, Kuang Y (2015) Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites. J Colloid Interface Sci 448:389–397

    Article  CAS  Google Scholar 

  53. Chen D, Zhang H, Yang K, Wang H (2016) Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal. J Hazard Mater 310:179–187

    Article  CAS  Google Scholar 

  54. Henriques B, Goncalves G, Emami N, Pereira E, Vila M, Marques PA (2016) Optimized graphene oxide foam with enhanced performance and high selectivity for mercury removal from water. J Hazard Mater 301:453–461

    Article  CAS  Google Scholar 

  55. Wan S, He F, Wu J, Wan W, Gu Y, Gao B (2016) Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J Hazard Mater 314:32–40

    Article  CAS  Google Scholar 

  56. Tang J, Huang Y, Gong Y, Lyu H, Wang Q, Ma J (2016) Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II) removal. J Hazard Mater 316:151–158

    Article  CAS  Google Scholar 

  57. Shariful MI, Sharif SB, Lee JJL, Habiba U, Ang BC, Amalina MA (2017) Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohyd Polym 157:57–64

    Article  CAS  Google Scholar 

  58. Shariful MI, Sepehr T, Mehrali M, Ang BC, Amalina MA (2018) Adsorption capability of heavy metals by chitosan/poly(ethylene oxide)/activated carbon electrospun nanofibrous membrane. J Appl Polym Sci 135(7):45851–45864

    Article  Google Scholar 

  59. Porada S, Egmond W, Post J, Saakes M, Hamelers H (2018) Tailoring ion exchange membranes to enable low osmotic water transport and energy efficient electrodialysis. J Membr Sci 552:22–30

    Article  CAS  Google Scholar 

  60. Nemati M, Hosseini S, Shabanian M (2017) Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal. J Hazard Mater 337:90–104

    Article  CAS  Google Scholar 

  61. Babilas D, Dydo P (2018) Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation. Sep Purif Technol 192:419–428

    Article  CAS  Google Scholar 

  62. Ge L, Wu B, Li Q, Wang Y, Yu D, Wu L, Pan J, Miao J, Xu T (2016) Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation. J Membr Sci 498:192–200

    Article  CAS  Google Scholar 

  63. Wu QX, Pan ZF, An L (2018) Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications. Renew Sustain Energy Rev 89:168–183

    Article  CAS  Google Scholar 

  64. Pan ZF, An L, Zhao TS, Tang ZK (2018) Advances and challenges in alkaline anion exchange membrane fuel cells. Prog Energy Combust Sci 66:141–175

    Article  Google Scholar 

  65. An L, Zhao TS (2018) Anion exchange membrane fuel cells: principles, materials and systems. Springer International Publishing, Cham, Switzerland

    Book  Google Scholar 

  66. Pan ZF, Chen R, An L, Li YS (2017) Alkaline anion exchange membrane fuel cells for cogeneration of electricity and valuable chemicals. J Power Sources 365:430–445

    Article  CAS  Google Scholar 

  67. Zhang H, Xu W, Wu Z, Zhou M, Jin T (2013) Removal of Cr (VI) with cogeneration of electricity by an alkaline fuel cell reactor. The J Phys Chem C 117(28):14479–14484

    Article  CAS  Google Scholar 

  68. Xu W, Zhang H, Li G, Wu Z (2016) A urine/Cr (VI) fuel cell—electrical power from processing heavy metal and human urine. J Electroanal Chem 764:38–44

    Article  CAS  Google Scholar 

  69. Zhang HM, Xu W, Fan Z, Liu X, Wu ZC, Zhou MH (2017) Simultaneous removal of phenol and dichromate from aqueous solution through a phenol-Cr (VI) coupled redox fuel cell reactor. Sep Purif Technol 172:152–157

    Article  CAS  Google Scholar 

  70. Qian Y, Huang L, Pan Y, Quan X, Lian H, Yang J (2018) Dependency of migration and reduction of mixed Cr2O72−, Cu2+ and Cd2+ on electric field, ion exchange membrane and metal concentration in microbial fuel cells. Sep Purif Technol 192:78–87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 25211817).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, Z.F., An, L. (2019). Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes. In: Inamuddin, Ahamed, M., Asiri, A. (eds) Applications of Ion Exchange Materials in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-10430-6_2

Download citation

Publish with us

Policies and ethics