Skip to main content

Structure and Properties of Non-conventional Cellulose Fibres

  • Chapter
  • First Online:
  • 400 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

The chemical composition of non-traditional plant fibres depends on their biological origin and age, likewise the extraction method. Chemical composition has a significant impact on the process of isolation of the fibres and their further usability and especially on the fibres’ properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li Y, Mai YW, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60(11):2037–2055

    Article  CAS  Google Scholar 

  2. Baley C, Busnel F, Grohens Y et al (2006) Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Compos: Part A 37:1626–1637

    Article  Google Scholar 

  3. Bismarck A, Aranberri-Askargorta I, Springer J et al (2002) Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior. Polym Compos 23(5):872–895

    Article  CAS  Google Scholar 

  4. Cho D, Kim HJ, Drzal LT (2014) Surface treatment and characterization of natural fibers: effects on the properties of biocomposites. In: Thomas S, Joseph K, Malhotra SK et al (eds) Polymer composites, biocomposites, vol 3, 1st edn. Willley, Weinheim

    Google Scholar 

  5. Han SO, Choi HY (2010) Morphology and surface properties of natural fibre treated with electron beam In: Mendez-Vilas A, Diaz J (eds) Microscopy: science, technology, applications and education, vol 3, pp 1880–1887

    Google Scholar 

  6. Hubbe MA, Gardner DJ, Shen W (2015) Contact angles and wettability of cellulosic surfaces: a review of proposed mechanisms and test strategies. BioResources 10(4):8657–8749

    CAS  Google Scholar 

  7. Schurz J (1994) Was ist neu an den neuen Fasern der Gattung Lyocell? Lenzinger Berichte 74:37–40

    Google Scholar 

  8. Schurz J, Lenz J (1994) Investigations on the structure of regenerated cellulose fibers. Macromol Symp 83(1):273–289

    Google Scholar 

  9. Kreze T, Stana-Kleinschek K, Ribitsch V (2001) The sorption behaviour of cellulose fibres. Lenzinger Berichte 80:28–33

    CAS  Google Scholar 

  10. Maximova N, Österberg M, Laine J et al (2004) The wetting properties and morphology of lignin adsorbed on cellulose fibres and mica. Colloids Surf A: Physicochem Eng Aspects 239 (1–3):65–75. https://doi.org/10.1016/j.colsurfa.2004.01.015

    Article  CAS  Google Scholar 

  11. Peter M, Rouette HK (1989) Grundlagen der Textilveredlung, 13th edn. Deutscher Fachverlag, Frankfurt

    Google Scholar 

  12. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27

    Article  CAS  Google Scholar 

  13. Cerchiara T, Chidichimo G, Rondi G et al (2014) Chemical composition, morphology and tensile properties of Spanish broom (Spartium junceum L.) fibres in comparison with flax (Linum usitatissimum L.). Fibres Text Eastern Europe (22)2: 25–28

    Google Scholar 

  14. Kymäläinen HR, Pasila A (2000) Equilibrium moisture content of flax/linseed and fibre hemp straw fractions. Agric Food Sci Finland 9:259–268

    Article  Google Scholar 

  15. Cao Y, Chan F, Chui YH et al (2012) Characterization of falx fibres modified by alkaline, enzyme and steam-heat treatments. BioResources 7(3):4109–4121

    Google Scholar 

  16. Persin Z, Stana-Kleinschek K, Kreze T (2002) Hydrophilic/hydrophobic characteristics of different cellulose fibres monitored by tensiometry. Croat Chem Acta 75(1):271–280

    CAS  Google Scholar 

  17. Persin Z, Stana-Kleinschek K, Sfiligoj-Smole M et al (2004) Determining the surface free energy of cellulose materials with the powder contact angle method. Text Res J 74(1):55–62. https://doi.org/10.1177/004051750407400110

    Article  CAS  Google Scholar 

  18. Hsieh Y-L, Thompson J, Miller A (1996) Water wetting and retention of cotton assemblies as affected by alkaline and bleaching treatments. Text Res J 66(7):456–464

    Article  CAS  Google Scholar 

  19. Chen H, Cheng H, Jiang Z et al (2013) Contact angles of single bamboo fibers measured in different environments and compared with other plant fibers and bamboo strips. BioResources 8(2):2827–2838

    Google Scholar 

  20. Orue A, Eceiza A, Peña-Rodriguez C et al (2016) Water uptake behavior and young modulus prediction of composites based on treated sisal fibers and poly(lactic acid). Materials 66(7):456–464. https://doi.org/10.3390/ma9050400

    Article  CAS  Google Scholar 

  21. Abraham E, Deepa B, Pothan LA et al (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475

    Article  CAS  Google Scholar 

  22. Gabriele B, Cerchiara T, Salerno G et al (2010) A new physical-chemical process for the efficient production of cellulose fibers from Spanish broom (Spartium junceum L.). Bioresour Technol 101(2): 724–729. https://doi.org/10.1016/j.biortech.2009.08.014, https://www.ncbi.nlm.nih.gov/pubmed/19734042

    Article  CAS  Google Scholar 

  23. Sun JX, Sun XF, Zhao H et al (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84(2):331–339

    Article  CAS  Google Scholar 

  24. Espino E, Cakir M, Domenek S et al (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crops Prod 62:552–559

    Article  CAS  Google Scholar 

  25. Rosli N, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8(2):1893–1908

    Article  Google Scholar 

  26. Habibi Y, El-Zawawy WK, Ibrahim MM et al (2008) Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agroindustrial residues. Compos Sci Technol 68(7–8):1877–1885. https://doi.org/10.1016/j.compscitech.2008.01.008

    Article  CAS  Google Scholar 

  27. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565

    Article  CAS  Google Scholar 

  28. Khan GMA, Saheruzzaman M, Razzaque ASM et al (2009) Grafting of acrylonitrile monomer onto bleached okra bast fibre and its textile properties. Indian J Fibre Text Res 34:321–327

    CAS  Google Scholar 

  29. Alam MS, Khan GMA (2007) Grafting of acrylonitrile monomer onto bleached okra bast fibre and its textile properties. Text Apparel Technol Manage 5(4):1

    Google Scholar 

  30. Neto WPF, Silvério HA, Dantas NO et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod 42:480–488

    Article  Google Scholar 

  31. Kundu SK, Mojumder P, Bhaduri SK (2005) Physical characteristics of khimp fibre. Indian J Fibre Text Res 30:153–156

    CAS  Google Scholar 

  32. Leitner J, Hinterstoisser B, Wastyn M et al (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425

    Article  CAS  Google Scholar 

  33. Martelli-Tosi M, da Silva Torricillas M, Martins MA et al (2016) Using commercial enzymes to produce cellulose nanofibers from soybean straw. J Nanomat. https://doi.org/10.1155/2016/8106814

    Article  Google Scholar 

  34. Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fibre, microfibrillate cellulose and cellulose nanocrystals. BioResources 5(2):727–740

    CAS  Google Scholar 

  35. Sheltami RM, Abdullah I, Ahmad I et al (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohyd Polym 88(2):772–779

    Article  CAS  Google Scholar 

  36. Kamarullah SH, Mydin MM, Atikah WS et al (2015) Surface morphology and chemical composition of napier grass fibers. Malays J Anal Sci 19(4):889–895

    Google Scholar 

  37. Khandual A, Sahu S (2016) Sabai grass: possibility of becoming a potential textile. In: Muthu SS, Gardetti M (ed) Sustainable fibres for fashion industry. Springer Science+Business Media, Singapore, pp 45–60

    Chapter  Google Scholar 

  38. Davies P, Morvan C, Sire O, Baley C (2007) Structure and properties of fibres from sea-grass (Zostera marina). J Mater Sci 42:4850–4857

    Article  CAS  Google Scholar 

  39. Dreyer J, Edom G (2005) Nettle. In: Franck RR (ed) Bast and other plant fibres. Woodhead Publishing, Abington Hall, pp 332–339

    Google Scholar 

  40. Samac DA, Jung HJG, Lamb JAFS (2006) Development of alfalfa (Medicago sativa L.) as a feedstock for production of ethanol and other bioproducts. In: Minteer S (ed) Alcoholic fuels. CRC Boca Raton, pp 79–98

    Google Scholar 

  41. Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohyd Polym 106:77–83

    Article  CAS  Google Scholar 

  42. Mojumder P, Mondal SB, Mukhopadhya S et al (2001) Chemical characterization of khimp fibre (Leptadenia pyrotechnica). J Sci Ind Res 60:675–677

    CAS  Google Scholar 

  43. Liu Z, Cao Y, Wang Z et al (2015) The utilization of soybean straw: fibre morphology and chemical characteristics. BioResources 10(2):2266–2280

    CAS  Google Scholar 

  44. Gañán P, Zuluaga R, Cruz J et al (2008) Elucidation of the fibrous structure of Musaceae maturate rachis. Cellulose 15:131–139

    Article  Google Scholar 

  45. Marques G, Rencoret J, Gutiérrez A et al (2010) Evaluation of the chemical composition of different non-woody plant fibers used for pulp and paper manufacturing. Open Agric J 4:93–101

    Article  CAS  Google Scholar 

  46. Yueping W, Ge W, Haitao C et al (2010) Structures of bamboo fiber for textiles. Text Res J 80(4):334–343. https://doi.org/10.1177/0040517509337633

    Article  CAS  Google Scholar 

  47. Sahu S, Khandual A, Behera L (2016) Sabai grass fibre: insight into thermal stability, chemical constitution and morphology. Int J Adv Chem Sci Appl 4(4):1–5

    Google Scholar 

  48. Bacci L, Baronti S, Predieri S et al (2009) Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Ind Crops Prod 29(2–3):480–484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majda Sfiligoj Smole .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sfiligoj Smole, M., Hribernik, S., Kurečič, M., Urbanek Krajnc, A., Kreže, T., Stana Kleinschek, K. (2019). Structure and Properties of Non-conventional Cellulose Fibres. In: Surface Properties of Non-conventional Cellulose Fibres. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-10407-8_4

Download citation

Publish with us

Policies and ethics