Skip to main content

Forecasting Severity of Motorcycle Crashes Using Transfer Learning

  • Chapter
  • First Online:

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

Road traffic accident is a common type of disaster worldwide. Regardless of the road status, driver education or strict implementation of driving rules, accidents are bound to occur. Malaysia is no exception to this unfortunate disaster.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelwahab, H., & Abdel-Aty, M. (2001). Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections. Transportation Research Record: Journal of the Transportation Research Board, 1746, 6–13.

    Article  Google Scholar 

  • Akar, Ö., & Güngör, O. (2013). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2).

    Google Scholar 

  • Alkheder, S., Taamneh, M., & Taamneh, S. (2017). Severity prediction of traffic accident using an artificial neural network. Journal of Forecasting, 36(1), 100–108.

    Article  MathSciNet  Google Scholar 

  • Bayer, J., Osendorfer, C., Korhammer, D., Chen, N., Urban, S., & van der Smagt, P. (2013). On fast dropout and its applicability to recurrent networks. arXiv preprint arXiv:1311.0701.

  • Chollet, F. (2015). Keras.

    Google Scholar 

  • Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

  • Delen, D., Sharda, R., & Bessonov, M. (2006). Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accident Analysis and Prevention, 38(3), 434–444.

    Article  Google Scholar 

  • Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2625–2634).

    Google Scholar 

  • Duan, Y., Lv, Y., Liu, Y. L., & Wang, F. Y. (2016). An efficient realization of deep learning for traffic data imputation. Transportation Research Part C: Emerging Technologies, 72, 168–181.

    Article  Google Scholar 

  • El-Basyouny, K., & Sayed, T. (2006). Comparison of two negative binomial regression techniques in developing accident prediction models. Transportation Research Record: Journal of the Transportation Research Board, 1950, 9–16.

    Article  Google Scholar 

  • Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech recognition with deep recurrent neural networks. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6645–6649). IEEE.‏

    Google Scholar 

  • Han, L., Luo, S., Yu, J., Pan, L., & Chen, S. (2015). Rule extraction from support vector machines using ensemble learning approach: an application for diagnosis of diabetes. IEEE Journal of Biomedical and Health Informatics, 19(2), 728–734.

    Article  Google Scholar 

  • Harnen, S., Umar, R. R., Wong, S. V., & Hashim, W. W. (2006). Motorcycle accident prediction model for junctions on urban roads in Malaysia. Advances in Transportation Studies, 8, 31–40.

    Google Scholar 

  • Hashmienejad, S. H. A., & Hasheminejad, S. M. H. (2017). Traffic accident severity prediction using a novel multi-objective genetic algorithm. International Journal of Crashworthiness, 1–16.‏

    Google Scholar 

  • Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.‏

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  Google Scholar 

  • Hong, H., Pradhan, B., Jebur, M. N., Bui, D. T., Xu, C., & Akgun, A. (2016). Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environmental Earth Sciences, 75(1), 40.

    Article  Google Scholar 

  • Immitzer, M., Atzberger, C., & Koukal, T. (2012). Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sensing, 4(9), 2661–2693.

    Article  Google Scholar 

  • Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.‏

  • Lawrence, S., Giles, C. L., & Fong, S. (2000). Natural language grammatical inference with recurrent neural networks. IEEE Transactions on Knowledge and Data Engineering, 12(1), 126–140.

    Article  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  • Liow. (2016, January 28). Retrieved April 07, 2017, from http://www.themalaymailonline.com.

  • Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.‏

  • Long, M., Wang, J., & Jordan, M. I. (2016). Deep transfer learning with joint adaptation networks. arXiv preprint arXiv:1605.06636.‏

  • Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2015). Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 16(2), 865–873.

    Google Scholar 

  • Manan, M. M. A., Jonsson, T., & Várhelyi, A. (2013). Development of a safety performance function for motorcycle accident fatalities on Malaysian primary roads. Safety Science, 60, 13–20.

    Article  Google Scholar 

  • Manan, M. M. A., & Várhelyi, A. (2012). Motorcycle fatalities in Malaysia. IATSS Research, 36(1), 30–39.

    Article  Google Scholar 

  • Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1), 135–150.

    Article  Google Scholar 

  • Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759.‏

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.‏

    Google Scholar 

  • Pei, X., Wong, S. C., & Sze, N. N. (2011). A joint-probability approach to crash prediction models. Accident Analysis and Prevention, 43(3), 1160–1166.

    Article  Google Scholar 

  • Priyanka, A., & Sathiyakumari, K. (2014). A comparative study of classification algorithm using accident data. International Journal of Computer Science & Engineering Technology (IJCSET), 5(10), 1018–1023.

    Google Scholar 

  • Rahman, N. H., Rainis, R., Noor, S. H., & Mohamad, S. M. S. (2016). The Buffering analysis to identify common geographical factors within the vicinity of severe injury related to motor vehicle crash in Malaysia. World Journal of Emergency Medicine, 7(4), 278.

    Article  Google Scholar 

  • Raschka, S. (2015). Python machine learning. Packt Publishing Ltd.‏

    Google Scholar 

  • Sameen, M. I., & Pradhan, B. (2017a). A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction. Journal of Sensors.‏

    Google Scholar 

  • Sameen, M. I., & Pradhan, B. (2017b). Assessment of the effects of expressway geometric design features on the frequency of accident crash rates using high-resolution laser scanning data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 733–747. https://doi.org/10.1080/19475705.2016.1265012.

    Article  Google Scholar 

  • Sameen, M. I., & Pradhan, B. (2017c). A simplified semi-automatic technique for highway extraction from high-resolution airborne LiDAR data and orthophotos. Journal of the Indian Society of Remote Sensing, 45(3), 395–405. https://doi.org/10.1007/s12524-016-0610-5.

    Article  Google Scholar 

  • Sameen, M. I., Pradhan, B., Shafri, H. Z. M., Mezaal, M. R., & Hamid, H. (2016). Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2055–2066. https://doi.org/10.1109/JSTARS.2017.2650956.

    Article  Google Scholar 

  • Sapuan, M. S., Razali, A. M., & Zamzuri, Z. H. (2016). Modeling motorcycle road accidents with traffic offenses at several potential locations using negative binomial regression model in Malaysia. International Journal of Applied Mathematics and Statistics™, 54(3), 104–114.‏

    Google Scholar 

  • Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., et al. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35(5), 1285–1298.

    Article  Google Scholar 

  • Sukor, N. S. A., Tarigan, A. K., & Fujii, S. (2016). Analysis of correlations between psychological factors and self-reported behavior of motorcyclists in Malaysia, depending on self-reported usage of different types of motorcycle facility. Transportation Research Part F: Traffic Psychology and Behaviour.‏

    Google Scholar 

  • Sutskever, I., Martens, J., & Hinton, G. E. (2011). Generating text with recurrent neural networks. In Proceedings of the 28th International Conference on Machine Learning (ICML-11) (pp. 1017–1024).‏

    Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.

    Article  Google Scholar 

  • Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2).‏

    Google Scholar 

  • Wang, J., Zheng, Y., Li, X., Yu, C., Kodaka, K., & Li, K. (2015). Driving risk assessment using near-crash database through data mining of tree-based model. Accident Analysis and Prevention, 84, 54–64.

    Article  Google Scholar 

  • Zeng, Q., & Huang, H. (2014). A stable and optimized neural network model for crash injury severity prediction. Accident Analysis and Prevention, 73, 351–358.

    Article  Google Scholar 

  • Zur, R. M., Jiang, Y., Pesce, L. L., & Drukker, K. (2009). Noise injection for training artificial neural networks: A comparison with weight decay and early stopping. Medical Physics, 36(10), 4810–4818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, B., Ibrahim Sameen, M. (2020). Forecasting Severity of Motorcycle Crashes Using Transfer Learning. In: Laser Scanning Systems in Highway and Safety Assessment. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-10374-3_12

Download citation

Publish with us

Policies and ethics