Analysis of Continuous Equations

  • Anatoly A. Martynyuk


In this chapter the application of the comparison principle and the direct Lyapunov method in terms of auxiliary matrix-valued functions is proposed for solution of the problems under consideration.


  1. 2.
    Aleksandrov, A.Yu., Platonov, A.V.: Aggregation and stability analysis of nonlinear complex systems. J. Math. Anal. Appl. 342(2), 989–1002 (2008)MathSciNetCrossRefGoogle Scholar
  2. 20.
    Corduneanu, C., Li, Y., Mehran, M.: Functional Differential Equations: Advances and Applications. Wiley, New York (2016)CrossRefGoogle Scholar
  3. 25.
    Djordjevic̀, M.Z.: Zur Stabilitat Nichtlinearer Gekoppelter Systeme mit der Matrix-Ljapunov-Methode. Diss. ETH 7690, Zurich (1984)Google Scholar
  4. 28.
    Gajic, Z.: Quantitative methods in nonlinear dynamics: novel approaches to Liapunov’s matrix functions by A. A. Martynyuk, New York: Marcel Dekker, 2002. Int. J. Robust Nonlinear Control 16, 465–466 (2006)CrossRefGoogle Scholar
  5. 31.
    Hahn, W.: Stability of Motion. Springer, Berlin (1995)Google Scholar
  6. 35.
    Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U. S. A. 27, 222–224 (1941)MathSciNetCrossRefGoogle Scholar
  7. 36.
    Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhauser Verlag, Boston (1998)CrossRefGoogle Scholar
  8. 38.
    Kats, I.Ya., Martynyuk, A.A.: Stability and Stabilization of Nonlinear Systems with Random Structure. Stability and Control: Theory, Methods and Applications, vol. 18. Taylor and Francis, London (2002)Google Scholar
  9. 49.
    Lakshmikantham, V., Bhaskar, T.G., Vasundhara Devi, J.: Theory of Set Differential Equations in Metric Spaces. Cambridge Scientific Publishers, Cambridge (2006)zbMATHGoogle Scholar
  10. 51.
    Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear Systems, 2nd edn. Springer, Basel (2015)CrossRefGoogle Scholar
  11. 53.
    Lyapunov, A.M.: The General Problem of the Stability of Motion. GITTL, Moscow (1950)Google Scholar
  12. 64.
    Martynyuk, A.A.: Stability by Liapunov’s Matrix Function Method with Applications. Marcel Dekker, New York (1998)Google Scholar
  13. 66.
    Martynyuk, A.A.: Qualitative Methods in Nonlinear Dynamics. Novel Approaches to Liapunov’s Matrix Function. Marcel Dekker, New York (2002)Google Scholar
  14. 69.
    Martynyuk, A.A.: Stability of Motion. The Role of Multicomponent Liapunov’s Functions. Cambridge Scientific Publishers, Cambridge (2007)Google Scholar
  15. 70.
    Martynyuk, A.A.: Stability of a set of trajectories of nonlinear dynamics. Dokl. Math. 75(3), 385–389 (2007)MathSciNetCrossRefGoogle Scholar
  16. 72.
    Martynyuk, A.A.: Asymptotic stability criterion for nonlinear monotonic systems and its applications (Review). Int. Appl. Mech. 47(5), 475–534 (2011)MathSciNetCrossRefGoogle Scholar
  17. 82.
    Martynyuk, A.A., Obolenskij, A.Yu.: Stability of solutions of autonomous Wazewskij systems. Differ. Equ. 16(8), 1392–1407 (1980)Google Scholar
  18. 83.
    Martynyuk, A.A., Martynyuk-Chernienko, Yu.A.: Uncertain Dynamical Systems: Stability and Motion Control. CRC Press Taylor and Francis Group, Boca Raton (2012)zbMATHGoogle Scholar
  19. 85.
    Martynyuk, A.A., Martynyuk-Chernienko, Yu.A.: Analysis of the set of trajectories nonlinear dynamics: stability and boundedness of motions. Differ. Equ. 49(1), 20–31 (2013)MathSciNetCrossRefGoogle Scholar
  20. 89.
    Martynyuk, A.A., Miladzhanov, V.G.: Stability Analysis of Nonlinear Systems Under Structural Perturbations. Cambridge Scientific Publishers, Cambridge (2014)zbMATHGoogle Scholar
  21. 91.
    Martynyuk, A.A., Chernetskaya, L.N., Martynyuk-Chernienko, Yu.A.: Dynamic analysis of the trajectories on product of convex compacts. Dokl. NAS Ukr. 9, 44–50 (2016)zbMATHGoogle Scholar
  22. 103.
    Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)MathSciNetCrossRefGoogle Scholar
  23. 106.
    Rus, I.A.: Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26(1), 103–107 (2010)MathSciNetzbMATHGoogle Scholar
  24. 109.
    Shurz, H.: Stability by Lyapunov’s Matrix Function Method with Applications by Martynyuk A.A. Pure and Applied Mathematics, vol. 214. Marcel Dekker, New York (1998). Zentralblatt MATH 907, 166–167Google Scholar
  25. 115.
    Ulam, S.M.: A Collection of the Mathematical Problems. Interscience Publ., New York (1960)zbMATHGoogle Scholar
  26. 119.
    Walter, W.: Differential and Integral Inequalities. Springer, Berlin (1970)CrossRefGoogle Scholar
  27. 122.
    Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. Mathematics Society Japan, Tokyo (1966)Google Scholar
  28. 123.
    Zaremba, S.K.: Sur les equations au paratingent. Bull. Sci. Math. bfLX(2), 139–160 (1936)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anatoly A. Martynyuk
    • 1
  1. 1.Institute of MechanicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations