Skip to main content

Research Challenges Involving Coupled Flows in Geotechnical Engineering

  • Chapter
  • First Online:
Geotechnical Fundamentals for Addressing New World Challenges

Abstract

Coupled fluid, chemical, heat, and electrical flows are common phenomena that are relevant to a wide variety of applications in Geotechnical Engineering, including the use of engineered clay barriers for waste containment, electro-osmosis for soil consolidation, highly compacted bentonite buffers for high-level radioactive nuclear waste disposal, and electrokinetics for soil contaminant removal, among others. For all of these applications, a fundamental understanding of coupled flow phenomena is required, including the basis of the various phenomena, the potential effect of the phenomena on fundamental soil behavior, and the applicability of the phenomena in both natural and built environments. This chapter highlights some of the advances over the past approximate three decades, including the effects of osmotic phenomena (chemico-osmosis, electro-osmosis, and thermo-osmosis) on the mechanical behavior of clays, the formulations and measurement of coupled flow phenomena, the distinction between phenomenological and microscopic (physical-based) formalisms, and considerations with respect to both saturated and unsaturated soil conditions. Based on the description of these advances, research challenges pertaining to the study of coupled flow phenomena for Geotechnical Engineering applications are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, Y.B., Alshawabkeh, A.N.: Principles of electrokinetic remediation. Environ. Sci. Technol. 27(13), 2638–2647 (1993)

    Google Scholar 

  2. Alshawabkeh, A.N., Acar, Y.B.: Electrokinetic remediation. II: Theoretical model. J. Geotech. Eng. 122(3), 186–196 (1996)

    Google Scholar 

  3. Bai, M., Elsworth, D.: Coupled processes in subsurface deformation, flow, and transport. ASCE Press, Reston, Virginia (2000)

    Google Scholar 

  4. Barbour, S.L., Fredlund, D.G.: Mechanisms of osmotic flow and volume change in clay soils. Can. Geotech. J. 26(4), 551–562 (1989)

    Google Scholar 

  5. Bjerrum, L., Moum, J., Eide, O.: Application of electro-osmosis to a foundation problem in a Norwegian quick clay. Géotechnique 17(3), 214–235 (1967)

    Google Scholar 

  6. Bresler, E.: Anion exclusion and coupling effects in nonsteady transport through unsaturated soils: I. Theory. Soil Sci. Soc. of America, Proc. 37(5), 663–669 (1973)

    Google Scholar 

  7. Casagrande, L.: Electro-osmotic stabilization of soils. Boston Soc. Civil Eng. J. 39(1), 51–83 (1952)

    Google Scholar 

  8. Casagrande, L.: Electro-osmosis in soils. Géotechnique, 1(3), 159-177 (1949)

    Google Scholar 

  9. Chatterji, P.K., Morgenstern, N.R.: A modified shear strength formulation for swelling clay soils. In: Hoddinott, K.B., Lamb, R.O. (eds.) Physico-Chemical Aspects of Soil and Related Materials, STP 1095, pp. 118–135. ASTM, West Conshohoken, PA (1990)

    Google Scholar 

  10. Chen, X., Hicks, M.A.: Unsaturated hydro-mechanical-chemo coupled constitutive model with consideration of osmotic flow. Comput. Geotech. 54, 94–103 (2013)

    Google Scholar 

  11. Cruchaudet, M., Croisé, J., Lavanchy, J.M.: In situ osmotic experiment in the Callovo-Oxfordian argillaceous formation at the Meuse/Haute-Marne URL (France): Data and analysis. Phys. Chem. Earth, Parts A/B/C 33, S114–S124 (2008)

    Google Scholar 

  12. de Marsily, G.: Quantitative hydrogeology. Academic Press Inc, Orlando, Florida (1986)

    Google Scholar 

  13. Deng, A., Zhou, Y.: Modeling electroosmosis and surcharge preloading consolidation. I: Model formulation. J. Geotech. Geoenviron. Eng. 142(4), 04015093 (2016a)

    Google Scholar 

  14. Deng, A., Zhou, Y.: Modeling electroosmosis and surcharge preloading consolidation. II: Validation and simulation results. J. Geotech. Geoenviron. Eng. 142(4), 04015094 (2016b)

    Google Scholar 

  15. Di Maio, C.: Exposure of bentonite to salt solutions: osmotic and mechanical effects. Géotechnique 48(3), 433–436 (1996)

    MathSciNet  Google Scholar 

  16. Dominijanni, A., Guarena, N., Manassero, M.: Laboratory assessment of the semipermeable properties of a natural sodium bentonite. Can. Geotech. 55(11), 1611–1631 (2018)

    Google Scholar 

  17. Dominijanni, A., Manassero, M.: Modelling the swelling and osmotic properties of clay soils. Part I: The phenomenological approach. Int. J. Eng. Sci. 51, 32–50 (2012b)

    Google Scholar 

  18. Dominijanni, A., Manassero, M.: Modelling the swelling and osmotic properties of clay soils. Part II: The physical approach. Int. J. Eng. Sci. 51, 51–73 (2012a)

    Google Scholar 

  19. Dominijanni, A., Manassero, M.: Modelling osmosis and solute transport through clay membrane barriers. In: Alshawabkleh, A. et al. (eds.) Waste Containment and Remediation, ASCE Geotechnical Special Publication No. 47, ASCE, Reston, Virginia (2005)

    Google Scholar 

  20. Dominijanni, A., Manassero, M., Puma, S.: Coupled chemical-hydraulic-mechanical behaviour of bentonites. Géotechnique 63(3), 191–205 (2013)

    Google Scholar 

  21. Esrig, M.I.: Pore pressures, consolidation, and elctrokinetics. J. Soil Mech. Found. Div. 94(SM4), 899–921 (1968)

    Google Scholar 

  22. Esrig, M.I., Gemeinhardt Jr., J.P.: Electrokinetic stabilization of an illitic clay. J. Soil Mech. Found. Div. 93(SM3), 109–128 (1967)

    Google Scholar 

  23. Fritz, S.J.: Ideality of clay membranes in osmotic processes: a review. Clays Clay Miner. 34(2), 214–223 (1986)

    Google Scholar 

  24. Garavito, A.M., Kooi, H., Neuzil, C.E.: Numerical modeling of a long-term in situ chemical osmosis experiment in the Pierre Shale, South Dakota. Adv. Water Resour. 29(3), 481–492 (2006)

    Google Scholar 

  25. Garavito, A.M., De Cannière, P., Kooi, H.: In situ chemical osmosis experiment in the Boom Clay at the Mol underground research laboratory. Phys. Chem. Earth, Parts A/B/C 32(1), 421–433 (2007)

    Google Scholar 

  26. Gonçalvès, J., de Marsily, G., Tremosa, J.: Importance of thermal osmosis for fluid flow and transport in clay formations hosting a nuclear waste repository. Earth and Planet. Sci. Lett. 339, 1–10 (2012)

    Google Scholar 

  27. Gray, D.H., Mitchell, J.K.: Fundamental aspects of electro-osmosis in soils. J. Soil Mech. Found. Div. 93(SM6), 209–236 (1967)

    Google Scholar 

  28. Greenberg, J.A., Mitchell, J.K., Witherspoon, P.A.: Coupled salt and water flows in a groundwater basin. J. Geophys. Res. 78(27), 6341–6353 (1973)

    Google Scholar 

  29. Groenevelt, P.H., Bolt, G.H.: Non-equilibrium thermodynamics of the soil-water system: review paper. J. Hydrol. 7(4), 358–388 (1969)

    Google Scholar 

  30. Groenevelt, P.H., Elrick, D.E.: Coupling phenomena in saturated homo-ionic montmorillonite: II. Theor. Soil Sci. Soc. America, J. 40, 820–823 (1976)

    Google Scholar 

  31. Guichet, X., Jouniaux, L., Pozzi, J.P.: Streaming potential of a sand column in partial saturation conditions. J. Geophys. Res.: Solid Earth 108(B3) (2003)

    Google Scholar 

  32. Gupta, A., Coelho, D., Adler, P.M.: Universal electro-osmosis formulae for porous media. J. Colloid Interface Sci. 319, 549–554 (2008)

    Google Scholar 

  33. Heister, K., Kleingeld, P.J., Loch, J.G.: Quantifying the effect of membrane potential in chemical osmosis across bentonite membranes by virtual short-circuiting. J. Colloid Interface Sci. 286(1), 294–302 (2005)

    Google Scholar 

  34. Heister, K., Kleingeld, P.J., Loch, J.G.: Induced membrane potentials in chemical osmosis across clay membranes. Geoderma 136(1), 1–10 (2006)

    Google Scholar 

  35. Horseman, S.T., McEwen, T.J.: Thermal constraints on disposal of heat-emitting waste in argillaceous rocks. Eng. Geol. 41(1), 5–16 (1996)

    Google Scholar 

  36. Horseman, S.T., Harrington, J.F., Noy, D.J.: Swelling and osmotic flow in a potential host rock. Phys. Chem. Earth, Parts A/B/C 32(1), 408–420 (2007)

    Google Scholar 

  37. Hu, L., Wu, H.: Mathematical model of electro-osmotic consolidation for soft ground improvement. Géotechnique 64(2), 155–164 (2014)

    Google Scholar 

  38. Jeyakanthan, V., Gnanendran, C.T., Lo, S.-C.R.: Laboratory assessment of electro-osmotic stabilization of soft clay. Can. Geotech. J. 48(12), 1788–1802 (2011)

    Google Scholar 

  39. Jo, H.Y., Benson, C.H., Edil, T.B.: Rate-limited cation exchange in thin bentonitic barrier layers. Can. Geotech. J. 43(4), 370–391 (2006)

    Google Scholar 

  40. Jones, C.J.F.P., Lamont-Black, J., Gendinning, S.: Electrokinetic geosynthetics in hydraulic applications. Geotext. Geomembr. 29(4), 381–390 (2011)

    Google Scholar 

  41. Jougnot, D., Revil, A., Lu, N., Wayllace, A.: Transport properties of the Callovo‐Oxfordian clay rock under partially saturated conditions. Water Resour. Res. 46(8) (2010)

    Google Scholar 

  42. Kang, J.B., Shackelford, C.D.: Clay membrane testing using a flexible-wall cell under closed-system boundary conditions. Appl. Clay Sci. 44(1), 43–58 (2009)

    Google Scholar 

  43. Kang, J.B., Shackelford, C.D.: Membrane behavior of compacted clay liners. J. Geotech. Geoenviron. Eng. 136(10), 1368–1382 (2010)

    Google Scholar 

  44. Kang, J.B., Shackelford, C.D.: Consolidation enhanced membrane behavior of a geosyntheic clay liner. Geotext. Geomembr. 29(6), 544–556 (2011)

    Google Scholar 

  45. Katchalsky, A., Curran, P.F.: Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, Massachusetts (1965)

    Google Scholar 

  46. Keijzer, Th.J.S., Kleingeld, P.J., Loch, J.P.G.: Chemical osmosis in compacted clayey material and the prediction of water transport. Eng. Geol. 53(2), 151–159 (1999)

    Google Scholar 

  47. Kemper, W.D., Quirk, J.P.: Ion mobilities and electrical charge of external clay surfaces inferred from potential differences and osmotic flow. Soil Sci. Soc. America, Proc. 36(3), 426–433 (1972)

    Google Scholar 

  48. Kemper, W.D., Rollins, J.B.: Osmotic efficiency coefficients across compacted clays. Soil Science Society of America Proceedings 30(5), 529–534 (1966)

    Google Scholar 

  49. Kim, S., Mench, M.M.: Investigation of temperature-driven water transport in polymer electrolyte fuel cell: thermo-osmosis in membranes. J. Membr. Sci. 328(1), 113–120 (2009)

    Google Scholar 

  50. Lamont-Black, J., Jones, C.J.F.P., Alder, D.: Electrokinetic strengthening of slopes-Case history. Geotext. Geomembr. 44(3), 319–331 (2016)

    Google Scholar 

  51. Likos, W.J., Lu, N.: Automated humidity system for measuring total suction characteristics of clay. Geotech. Test. J. 26(2), 1–12 (2003)

    Google Scholar 

  52. Linde, N., Jougnot, D., Revil, A., Matthai, S.K., Arora, A., Renard, D.: Streaming current generation in two-phase flow conditions. Geophys. Res. Lett., 34, L03306, (2007) https://doi.org/10.1029/2006gl028878

  53. López-Vizcaíno, R., Yustres, Á., Leon, M.J., Sáez, C., Cañizares, P., Rodrigo, M.A., Navarro, V.: Multiphysics implementation of electrokinetic remediation models for natural soils and porewaters. Electrochim. Acta 225, 93–104 (2017)

    Google Scholar 

  54. Lu, N., Likos, W.J.: Unsaturated soil mechanics. Wiley, New York (2004)

    Google Scholar 

  55. Lu, N., Olsen, H.W., Likos, W.J.: Appropriate material properties for advective—diffusive solute flux in membrane soil. J. Geotech. Geoenviron. Eng. 130(12), 1341–1346 (2004)

    Google Scholar 

  56. Malusis, M.A., Daniyarov, A.S.: Membrane efficiency and diffusive tortuosity of a dense prehydrated geosynthetic clay liner. Geotext. Geomembr. 44, 719–730 (2016)

    Google Scholar 

  57. Malusis, M.A., Scalia, J., Norris, A.S., Shackelford, C.D.: Quantifying the significance of chemico-osmotic counter-advection on solute transport through semipermeable clay barriers. In: International Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2), 6–7 September 2017, Leeds, University of Leeds, UK, Paper 51 (2017)

    Google Scholar 

  58. Malusis, M.A., Shackelford, C.D.: Chemico-osmotic efficiency of a geosynthetic clay liner. J. Geotech. Geoenviron. Eng. 128(2), 97–106 (2002)

    Google Scholar 

  59. Malusis, M.A., Shackelford, C.D.: Coupling effects during steady-state solute diffusion through a semipermeable clay membrane. Environ. Sci. Technol. 36(6), 1312–1319 (2002)

    Google Scholar 

  60. Malusis, M.A., Shackelford, C.D.: Theory for reactive solute transport through clay membrane barriers. J. Contam. Hydrol. 59(3–4), 291–316 (2002)

    Google Scholar 

  61. Malusis, M.A., Shackelford, C.D., Olsen, H.W.: A laboratory apparatus to measure chemico-osmotic efficiency coefficients for clay soils. Geotech. Test. J. 24(3), 229–242 (2001)

    Google Scholar 

  62. Malusis, M.A., Shackelford, C.D., Olsen, H.W.: Flow and transport through clay membrane barriers. Eng. Geol. 70(3–4), 235–248 (2003)

    Google Scholar 

  63. Malusis, M.A., Shackelford, C.D., Maneval, J.E.: Critical review of coupled flux formulations for clay membranes based on nonequilibrium thermodynamics. J. Contam. Hydrol. 138, 40–59 (2012)

    Google Scholar 

  64. Malusis, M.A., Kang, J.-B., Shackelford, C.D.: Restricted salt diffusion in a geosynthetic clay liner. Environ. Geotech. 2(2), 68–77 (2015)

    Google Scholar 

  65. Manassero, M., Dominijanni, A.: Modelling the osmosis effect on solute migration through porous media. Géotechnique 53, 481–492 (2003)

    Google Scholar 

  66. Manassero M., Dominijanni A., Musso G., Puma S.: Coupled phenomena in contaminant transport. In: Bouazza, A. et al. (eds.) Engineers Australia. Proceedings of the 7th International Congress on Environmental Geotechnics, pp. 144–169, November 10–14, 2014, Melbourne, Australia (2014)

    Google Scholar 

  67. Manassero M., Dominijanni A.: Coupled modelling of swelling properties and electrolyte transport through geosynthetic clay liner. In: Datta M. et al. (eds.) Proceedings of the 6th International Congress on Environmental Geotechnics, Vol. 1, pp. 260–271, 8–12 November 2010, New Delhi, India. Tata McGraw Hill, New Delhi (2010)

    Google Scholar 

  68. Manassero, M.: On the fabric and state parameters of active clays for contaminant control. In: Lee W., Lee J.-S., Kim, H.-K., Kim, D.-S. (eds.) Second R. Kerry Rowe Lecture, Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE), pp. 167–189, 17–22 September 2017, Seoul, Korea. Korean Geotechnical Society, International Society for Soil Mechanics and Geotechnical Engineering, Seoul (2017)

    Google Scholar 

  69. Mattson, E.D., Bowman, R.S., Lindgren, E.R.: Electrokinetic ion transport through unsaturated soil: 1. Theory, model development, and testing. J. Contam. Hydrol 54(1–2), 99–120 (2002a)

    Google Scholar 

  70. Mattson, E.D., Bowman, R.S., and Lindgren, E.R.: Electrokinetic ion transport through unsaturated soil: 2. Application to a heterogeneous field site. J. Contam. Hydrol. 54(1–2), 121–140 (2002b)

    Google Scholar 

  71. Medved, I., Černý, R.: Osmosis in porous media: a review of recent studies. Microporous Mesoporous Mater. 170, 299–317 (2013)

    Google Scholar 

  72. Mitchell, J.K.: Conduction phenomena: from theory to geotechnical practice. Géotechnique 41(3), 299–340 (1991)

    Google Scholar 

  73. Mitchell, J.K., Banerjee, S.: In-situ volume-change properties by electro-osmosis. J. Geotech. Eng. Div. 106(GT4), 367–384 (1980)

    Google Scholar 

  74. Mitchell, J.K., Alvarez-Cohen, L., Atekwana, E.S., Burns, S.E., Gilbert, R.B., Kavazanjian, Jr., E., O’Riordan, W.H., Rowe, R.K., Shackelford, C.D., Sharma, H.D., Yesiller, N.: Assessment of the performance of engineered waste containment barriers. The National Academies Press, 500 Fifth Street, N.W., Washington, DC 20001 (2007)

    Google Scholar 

  75. Mitchell, J.K., Wan, T.-Y.: Electro-osmotic consolidation-its effect on soft soils. In: Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, pp 219–224, 10–15 July 1977, Tokyo (1977)

    Google Scholar 

  76. Mitchell, J.K., Soga, K.: Fundamentals of soil behavior, 3rd edn. Wiley, New York (2005)

    Google Scholar 

  77. Musso, G., Cosentini, R.M., Dominijanni, A., Guarena, N., Manassero, M.: Laboratory characterization of the chemo-hydro-mechanical behavior of chemically sensitive clays. Rivista Italiana Geotecnica 2017(3), 22–47 (2017). https://doi.org/10.19199/2017.3.0557-1405.022

    Article  Google Scholar 

  78. Neuzil, C.E.: Osmotic generation of ‘anomalous’ fluid pressures in geological environments. Nature 403, 182–184 (2000)

    Google Scholar 

  79. Neuzil, C.E., Provost, A.M.: Recent experimental data may point to a greater role for osmotic pressures in the subsurface. Water Resour. Res. 45, 1–14 (2009)

    Google Scholar 

  80. Oduor, P.G., Santos, X., Forward, K., Sharp, N., Bue, C., Casey, F., Abwawo, J.: Semi-empirically derived petrophysical and thermodynamical coefficients of permselective shales—Implications on ore mineralization. J. Membr. Sci. 343(1), 171–179 (2009)

    Google Scholar 

  81. Olsen, H.W.: Simultaneous fluxes of liquid and charge in saturated kaolinite. Soil Sci. Soc. America, Proc. 33, 338–344 (1969)

    Google Scholar 

  82. Olsen, H.W.: Liquid movement through kaolinite under hydraulic, electric, and osmotic gradients. AAPG Bulletin 56(10), 2022–2028 (1972)

    Google Scholar 

  83. Olsen, H.W., Yearsley, E.N., Nelson, K.R.: Chemico-osmosis versus diffusion-osmosis. Transportation Research Record 1288, Transportation Research Board, Washington, D.C., pp. 15–22 (1990)

    Google Scholar 

  84. Paszkuta, M., Rosanne, M., Adler, P.M.: Transport coefficients of saturated compact clays. C.R. Geosci. 338(12), 908–916 (2006)

    Google Scholar 

  85. Revil, A., Schwaeger, H., Cathles, L. M., Manhardt, P. D.: Streaming potential in porous media: 2. Theory and application to geothermal systems. J Geophys. Res: Solid Earth 104(B9), 20033–20048 (1999)

    Google Scholar 

  86. Revil, A.: Transport of water and ions in partially water-saturated porous media. Part 1. Constitutive equations. Adv. Water Resour. 103, 119–138 (2017a)

    Google Scholar 

  87. Revil, A.: Transport of water and ions in partially water-saturated porous media. Part 2. Filtration effects. Adv. Water Resour. 103, 139–152 (2017b)

    Google Scholar 

  88. Revil, A., Leroy, P.: Constitutive equations for ionic transport in porous shales. J. Geophys. Res. 109, B03208 (2004). https://doi.org/10.1029/2003JB002755

    Article  Google Scholar 

  89. Revil, A., Linde, N.: Chemico-electromechanical coupling in microporous media. J. Colloid Interface Sci. 302, 682–692 (2006)

    Google Scholar 

  90. Revil, A., Leroy, P., Titov, K.: Characterization of transport properties of argillaceous sediments: Application to the Callovo-Oxfordian argillite. J. Geophys. Res. 110, B06202 (2005). https://doi.org/10.1029/2004JB003442

    Article  Google Scholar 

  91. Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthäi, S., Finsterle, S.: Electrokinetic coupling in unsaturated porous media. J. Colloid Interface Sci. 313(1), 315–327 (2007)

    Google Scholar 

  92. Rosanne, M., Paszkuta, M., Thovert, J.F., Adler, P.M.: Electro‐osmotic coupling in compact clays. Geophys. Res. Lett. 31(18), (2004)

    Google Scholar 

  93. Rosanne, R., Paszkuta, M., Tevissen, E., Adler, P.M.: Thermodiffusion in compact clays. J. Colloid Interface Sci. 267(1), 194–203 (2003)

    Google Scholar 

  94. Rosanne, M., Paszkuta, M., Adler, P.M.: Thermodiffusional transport of electrolytes in compact clays. J. Colloid Interface Sci. 299(2), 797–805 (2006)

    Google Scholar 

  95. Sample-Lord, K.M., Shackelford, C.D.: Apparatus for measuring coupled membrane and diffusion behavior of unsaturated sodium bentonite. Vadose Zone J. 16(9), (2017) https://doi.org/10.2136/vzj2016.12.0140

  96. Sample-Lord, K.M., Shackelford, C.D.: Membrane behavior of unsaturated sodium bentonite. J. Geotech. Geoenviron. Eng. 144(1), 04017102 (2018). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001803

    Article  Google Scholar 

  97. Sánchez, M., Arson, C., Gens, A., Aponte, F.: Analysis of unsaturated materials hydration incorporating the effect of thermo-osmotic flow. Geomech. Energy and the Environ. 6, 101–115 (2016)

    Google Scholar 

  98. Santamarina, J.C., Klein, K.A., Palomino, A., Guimaraes, M.S.: Micro-scale aspects of chemical-mechanical coupling: Interparticle forces and fabric. In: Di Maio, T. Hueckel, and B. Loret, (eds.) Chemico-Mechanical Coupling of Clays: from Nano-Scale to Engineering Applications, 4C, pp. 7–63. A.A. Balkema Publishers, Lisse, The Netherlands (2002)

    Google Scholar 

  99. Schmid, K.S., Gross, J., Helmig, R.: Chemical osmosis in two-phase flow and salinity-dependent capillary pressures in rocks with microporosity. Water Resour. Res. 50(2), 763–789 (2014)

    Google Scholar 

  100. Shackelford, C.D., Malusis, M.A., Olsen, H.W.: Clay membrane behavior for geoenvironmental containment. Soil and Rock America Conference 2003. In: Culligan, P.J., Einstein, H.H., Whittle, A.J. (eds.) Proceedings of the joint 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering and the 39th U. S. Rock Mechanics Symposium. Verlag Glückauf GMBH, Essen, Germany, Vol. 1, pp. 767–774 (2003)

    Google Scholar 

  101. Shackelford, C.D., Moore, S.M.: Fickian diffusion of radionuclides for engineered containment barriers: diffusion coefficients, porosities, and complicating issues. Eng. Geol. 152(1), 133–147 (2013)

    Google Scholar 

  102. Shackelford, C.D.: Diffusion of contaminants through waste containment barriers. Transp. Res. Rec. 1219, Geotechnical Engineering 1989, TRB, NRC, National Academy Press, Washington, DC (1989)

    Google Scholar 

  103. Shackelford, C.D.: Environmental issues in geotechnical engineering. In: 16th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 1, pp. 95–122, Osaka, Japan, 12–16 September 2005. Millpress, Rotterdam, The Netherlands (2005)

    Google Scholar 

  104. Shackelford, C.D., Daniel, D.E.: Diffusion in saturated soil: I. Background. J. Geotech. Eng. 117(3), 467–484 (1991)

    Google Scholar 

  105. Shackelford, C.D., Lee, J.-M.: The destructive role of diffusion on clay membrane behavior. Clays Clay Miner. 51(2), 187–197 (2003)

    Google Scholar 

  106. Shackelford, C.D., Benson, C.H., Katsumi, T., Edil, T.B., Lin, L.: Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext. Geomembr. 18(2–4), 133–161 (2000)

    Google Scholar 

  107. Shackelford, C.D., Meier, A.J., Sample-Lord, K.M.: Limiting membrane and diffusion behavior of a geosynthetic clay liner. Geotext. Geomembr. 44(5), 707–718 (2016)

    Google Scholar 

  108. Sherwood, J.D., Craster, B.: Transport of water and ions through a clay membrane. J. Colloid Interface Sci. 230(2), 349–358 (2000)

    Google Scholar 

  109. Soler, J.M.: The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport. J. Contam. Hydrol. 53(1–2), 63–84 (2001)

    Google Scholar 

  110. Spagnoli, G., Klitzsch, N., Fernandez-Steeger, T., Feinendegen, M., Rey, A.R., Stanjek, H., Azzam, R.: Application of electro-osmosis to reduce the adhesion of clay during mechanical tunnel driving. Environ. Eng. Geosci. XVII(4), 417–426 (2011)

    Google Scholar 

  111. Sridharan, A., Venkatapp Rao, G.: Mechanisms controlling volume change of saturated clays and the role of the effective stress concept. Géotechnique 23(2), 359–382 (1973)

    Google Scholar 

  112. Trémosa, J., Gonçalvès, J., Matray, J.M., Violette, S.: Estimating thermo-osmotic coefficients in clay-rocks: II. In situ experimental approach. J. Colloid and Interface Sci. 342(1), 175–184 (2010)

    Google Scholar 

  113. Van Impe, P.O., Van Impe, W.F., Mazzieri, F., Constales, D.: Coupled flow model for three-ion advective-dispersive-reactive transport in consolidating clay liners. In; 13th European Conference on Soil Mechanics and Geotechnical Engineering, Balkema, Rotterdam, pp. 227–232 (2003)

    Google Scholar 

  114. Van Olphen, H.: An introduction to clay colloid chemistry, 2nd edn. Wiley, New York (1977)

    Google Scholar 

  115. Virkutyte, J., Sillampää, M., Latostenmaa, P.: Electrokinetic soil remediation—critical overview. Sci. Total Environment 289, 97–121 (2002)

    Google Scholar 

  116. Wan, T.-Y., Mitchell, J.K.: New apparatus for consolidation by electro-osmosis. J. Geotech. Eng. Div. 101(GT5), 503–507 (1975)

    Google Scholar 

  117. Wan, T.-Y., Mitchell, J.K.: Electro-osmotic consolidation of soils. J. Geotech. Eng. Div. 102(GT5), 472–491 (1976)

    Google Scholar 

  118. Wang, J., Fu, H., Liu, F., Cai, Y., Zhou, J.: Influence of electro-osmosis activation time on vacuum electro-osmosis consolidation of a dredged slurry. Can. Geotech. J. 55(1), 147–153 (2018)

    Google Scholar 

  119. Wayllace, A., Lu, N.: Transient water release and imbibitions method for rapidly measuring wetting and drying soil water retention and hydraulic conductivity functions. Geotech. Test. J. 35, 1–15 (2012)

    Google Scholar 

  120. Xiong, Y., Fakcharoenphol, P., Winterfeld, P., Zhang, R., and Wu, Y.-S.: Coupled geomechanical and reactive geochemical model for fluid and heat flow: application for enhanced geothermal reservoir. Soc. Pet. Eng. paper SPE 165982 (2013)

    Google Scholar 

  121. Yeung, A.T.: Coupled flow equations for water, electricity and ionic contaminants through clayey soils under hydraulic, electrical, and chemical gradients. J. Non-Equilib. Thermodyn. 15, 247–267 (1990)

    MATH  Google Scholar 

  122. Yeung, A.: Milestone developments, myths, and future directions of electrokinetic remediation. Sep. Purif. Technol. 79(2), 124–132 (2011)

    Google Scholar 

  123. Yeung, A.T., Mitchell, J.K.: Coupled fluid, electrical and chemical flows in soil. Geotechnique 43(1), 121–134 (1993)

    Google Scholar 

  124. Yustres, Á., López-Vizcaíno, R., Sáez, C., Cañizares, P., Rodrigo, M.A., Navarro, V.: Water transport in electrokinetic remediation of unsaturated kaolinite. Experimental and numerical study. Sep. Purif. Technol. 192, 196–204 (2018)

    Google Scholar 

  125. Zagorščak, R., Sedighi, M., Thomas, H.R.: Effects of thermo-osmosis on hydraulic behavior of saturated clays. Int. J. Geomech. 17(3), 04016068 (2017)

    Google Scholar 

  126. Zhou, J., Tao, Y.L., Xu, C.J., Gong, X.N., Hu, P.C.: Electro-osmotic strengthening of silts based on selected electrode materials. Soils Found. 55(5), 1171–1180 (2015)

    Google Scholar 

  127. Zhuang, Y.-F., Wang, Z.: Interface electric resistance of electroosmotic consolidation. J. Geotech. Geoenviron. Eng. 133(12), 1617–1621 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles D. Shackelford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shackelford, C.D., Lu, N., Malusis, M.A., Sample-Lord, K.M. (2019). Research Challenges Involving Coupled Flows in Geotechnical Engineering. In: Lu, N., Mitchell, J. (eds) Geotechnical Fundamentals for Addressing New World Challenges. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-06249-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06249-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06248-4

  • Online ISBN: 978-3-030-06249-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics