Skip to main content

Fundamental Challenges in Unsaturated Soil Mechanics

  • Chapter
  • First Online:
Geotechnical Fundamentals for Addressing New World Challenges

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Abstract

Fundamental challenges in unsaturated soil mechanics have been identified in four major areas: quantifying internal stress state, developing a new paradigm for soil classification, developing new computational and theoretical constructs for unsaturated soil behavior, and tackling emerging problems in geotechnical engineering practice from the perspective of unsaturated soil mechanics. This chapter addresses each of these needs by critically reviewing some of the history in each area and summarizing recent research advances as current understanding of unsaturated soil behavior continues to evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agus, S.S., Schanz, T., Fredlund, D.G.: Measurements of suction versus water content for bentonite–sand mixtures. Can. Geotech. J. 47(5), 583–594 (2010)

    Google Scholar 

  2. Akin, I.D., Likos, W.J.: Specific surface area of clay using water vapor and EGME sorption methods. Geotech. Test. J. 37(6), 1–12 (2014). https://doi.org/10.1520/GTJ20140064

    Article  Google Scholar 

  3. Akin, I.D., Likos, W.J.: Water vapor sorption of polymer-modified bentonites. Geo-Chicago 2016, 508–517 (2016)

    Google Scholar 

  4. Allen, M.P., Tildesley, D.J.: Computer simulation of liquids. Oxford University Press (1989)

    Google Scholar 

  5. Alonso, E.E., Gens, A., Josa, A.: A constitutive model for partially saturated soils. Geotechnique 40(3), 405–430 (1990)

    Google Scholar 

  6. Amarasinghe, P.M., Anandarajah, A.: Influence of fabric variable s on clay–water–air capillary meniscus. Can. Geotech. J. 48(7), 987–995 (2011)

    Google Scholar 

  7. Amarasinghe, P.M., Anandarajah, A., Ghosh, P.: Molecular dynamic study of capillary forces on clay particles. Appl. Clay Sci. 88, 170–177 (2014)

    Google Scholar 

  8. Anandarajah, A., Amarasinghe, P.M.: Microstructural investigation of soil suction and hysteresis of fine-grained soils. J. Geotech. Geoenviron. Eng. 138(1), 38–46 (2011)

    Google Scholar 

  9. Anderson, D.M., Tice, A.R.: Predicting unfrozen water contents in frozen soils from surface area measurements. Highway Research Record 393, (1972)

    Google Scholar 

  10. Andrade, J.E., Borja, R.I.: Modeling deformation banding in dense and loose fluid-saturated sands. Finite Elem. Anal. Des. 43(5), 361–383 (2007)

    MathSciNet  Google Scholar 

  11. Baker, R., Frydman, S.: Unsaturated soil mechanics: critical review of physical foundations. Eng. Geol. 106(1), 26–39 (2009)

    Google Scholar 

  12. Berendsen, H., Grigera, J., Straatsma, T.: The missing term in effective pair potentials. J. Phys. Chem. 91(24), 6269–6271 (1987)

    Google Scholar 

  13. Berend, et al.: Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites. Clays Clay Miner. 43(3), 324–336 (1995)

    Google Scholar 

  14. Bishop, A.W.: The principle of effective stress. Teknisk ukeblad 106(39), 859–863 (1959)

    Google Scholar 

  15. Borja, R.I.: Bifurcation of elastoplastic solids to shear band mode at finite strain. Comput. Methods Appl. Mech. Eng. 191(46), 5287–5314 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Borja, R.I.: Cam-clay plasticity. Part V: a mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Comput. Methods Appl. Mech. Eng. 193(48), 5301–5338 (2004)

    Google Scholar 

  17. Borja, R.I., Song, X., Rechenmacher, A.L., Abedi, S., Wu, W.: Shear band in sand with spatially varying density. J. Mech. Phys. Solids 61(1), 219–234 (2013)

    Google Scholar 

  18. Borja, R.I., Song, X., Wu, W.: Critical state plasticity. part vii: triggering a shear band in variably saturated porous media. Comput. Methods Appl. Mech. Eng. 261, 66–82 (2013)

    Google Scholar 

  19. Borja, R., Song, X.: Strain localization in porous materials with spatially varying density and degree of saturation. Comput. Methods Recent Adv. Geomech. p. 13 (2014)

    Google Scholar 

  20. Briaud, J.-L., Chen, H.-C., Govindasamy, A., Storesund, R.: Levee erosion by overtopping in New Orleans during the Katrina Hurricane. J. Geotech. Geoenviron. Eng. 134(5), 618–632 (2008)

    Google Scholar 

  21. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S.A., Karplus, M.: CHARMm: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983)

    Google Scholar 

  22. Burns, S.E., Culligan, P.J., Lu, N., Santamarina, J.C., Wayllace, A.: NSF workshop on geotechnical fundamentals. Geo-Strata Geo Inst. ASCE 21(2), 62–63 (2017)

    Google Scholar 

  23. Callari, C., Armero, F., Abati, A.: Strong discontinuities in partially saturated poroplastic solids. Comput. Methods Appl. Mech. Eng. 199(23), 1513–1535 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Carrier, B., Vandamme, M., Pellenq, R.J.-M., Van Damme, H.: Elastic properties of swelling clay particles at finite temperature upon hydration. J. Phys. Chem. C 118(17), 8933–8943 (2014)

    Google Scholar 

  25. Cases, J., Berend, I., Besson, G., Francois, M., Uriot, J., Thomas, F., Poirier, J.: Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form, Langmuir 8(11), 2730–2739 (1992)

    Google Scholar 

  26. Cerato, A.B.: Influence of specific surface area on geotechnical characteristics of fine-grained soils, Unpublished M.Sc. Thesis, Department of Civil and Environmental Engineering, University of Massachusetts (2001)

    Google Scholar 

  27. Cerato, A., Lutenegger, A.: Determination of surface area of fine-grained soils by the Ethylene Glycol Monoethyl Ether (EGME) method. Geotech. Test. J. 25(3) 315–321. https://doi.org/10.1520/GTJ11087J. ISSN: 0149-6115 (2002)

  28. Cerato, A.B., Lutenegger, A.J.: Activity, relative activity and specific surface area of fine-grained soils. In: Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering, vol. 16, Balkema (2005)

    Google Scholar 

  29. Chen, F.H.: Foundations on expansive soils, vol. 12. Elsevier (1988)

    Google Scholar 

  30. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Chen, Y.-H., Anderson, A.: Methodology for estimating embankment damage caused by flood overtopping. Transport. Res. Rec. 1151 (1987)

    Google Scholar 

  32. Chittoori, B., Puppala, A.J.: Quantitative estimation of clay mineralogy in fine-grained soils. J. Geotech. Geoenviron. Eng. 137(11), 997–1008 (2011)

    Google Scholar 

  33. Chuoke, R., Van Meurs, P., van der Poel, C. et al.: The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media (1959)

    Google Scholar 

  34. Churchman, G., Burke, C.: Properties of sub soils in relation to various measures of surface area and water content. Eur. J. Soil Sci. 42(3), 463–478 (1991)

    Google Scholar 

  35. Civan, F., Rai, C.S., Sondergeld, C.H., et al.: Determining shale permeability to gas by simultaneous analysis of various pressure tests. SPE J. 17(03), 717–726 (2012)

    Google Scholar 

  36. Clarkson, C., Bustin, R.: The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 1. isotherms and pore volume distributions. Fuel 78(11), 1333–1344 (1999)

    Google Scholar 

  37. Collis-George, N.: The hydration and dehydration of Na-montmorillonite (belle fourche). Eur. J. Soil Sci. 6(1), 99–110 (1955)

    Google Scholar 

  38. Cui, X., Bustin, A., Bustin, R.M.: Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications. Geofluids 9(3), 208–223 (2009)

    Google Scholar 

  39. Cygan, R.T., Liang, J.-J., Kalinichev, A.G.: Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108(4), 1255–1266 (2004)

    Google Scholar 

  40. Dasog, G., Acton, D., Mermut, A., JONG, E.D.: Shrink-swell potential and cracking in clay soils of Saskatchewan. Can. J. Soil Sci. 68(2), 251–260 (1988)

    Google Scholar 

  41. De Borst, R., Sluys, L., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analyses of localization of deformation. Eng. Comput. 10(2), 99–121 (1993)

    Google Scholar 

  42. Dong, Y., Lu, N.: Measurement of suction-stress characteristic curve under drying and wetting conditions. Geotech. Test. J. 40(1), (2017)

    Google Scholar 

  43. Dos Santos, M., DeCastro, E.: Soil erosion in roads. In: 6th International Conference on Soil Mechanics and Foundation Engineering 1, 116–118 (1965)

    Google Scholar 

  44. Ebrahimi, D., Pellenq, R.J.-M., Whittle, A.J.: Nanoscale elastic properties of montmorillonite upon water adsorption. Langmuir 28(49), 16855–16863 (2012)

    Google Scholar 

  45. Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis of partially saturated soil. Comput. Methods Appl. Mech. Eng. 193(27), 2885–2910 (2004)

    MATH  Google Scholar 

  46. Eliassi, M., Glass, R.J.: On the porous-continuum modeling of gravity-driven fingers in unsaturated materials: extension of standard theory with a hold-back-pile-up effect. Water Resour. Res. 38(11) (2002)

    Google Scholar 

  47. Farrar, D., Coleman, J.: The correlation of surface area with other properties of nineteen British clay soils. Eur. J. Soil Sci. 18(1), 118–124 (1967)

    Google Scholar 

  48. Finno, R.J., Harris, W.W., Mooney, M.A., Viggiani, G.: Strain localization and undrained steady state of sand. J. Geotech. Eng. 122(6), 462–473 (1996)

    Google Scholar 

  49. Fredlund, D.G., Morgenstern, N.R.: Stress state variables for unsaturated soils. J. Geotech. Eng. Div. 15(3), 313–321 (1977)

    Google Scholar 

  50. Fredlund, D.G., Rahardjo, H.: Soil mechanics for unsaturated soils. Wiley, New York (1993)

    Google Scholar 

  51. Garcia, M.: Sedimentation engineering: processes, measurements, modeling, and practice. American Society of Civil Engineers (2008)

    Google Scholar 

  52. Gessler, J.: Beginning and Ceasing of sediment motion, Chap. 7 River Mechanics. In: Shen, H.W. (ed.) Water Resources Publication, Littleton, Co. (1971)

    Google Scholar 

  53. Gray, W.G., Miller, C.T.: Introduction to the thermodynamically constrained averaging theory for porous medium systems. Springer (2014)

    Google Scholar 

  54. Held, R.J., Illangasekare, T.H.: Fingering of dense nonaqueous phase liquids in porous media: 1. experimental investigation. Water Resour. Res. 31(5), 1213–1222 (1995)

    Google Scholar 

  55. Hill, S., et al.: Channeling in packed columns. Chem. Eng. Sci. 1(6), 247–253 (1952)

    Google Scholar 

  56. Hillel, D.: Environmental soil physics: fundamentals, applications, and environmental considerations. Academic Press, Cambridge, MA (1998)

    Google Scholar 

  57. Hoehn, A., Scovazzo, P., Stodieck, L.S., Clawson, J., Kalinowski, W., Rakow, A., Simmons, D., Heyenga, A.G., Kliss, M.H.: Microgravity root zone hydration systems, Technical report, SAE Technical Paper (2000)

    Google Scholar 

  58. Holtz, W.G., Gibbs, H.J.: Engineering properties of expansive clays. Trans. Am. Soc. Civ. Eng. 121(1), 641–663 (1956)

    Google Scholar 

  59. Homsy, G.M.: Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19(1), 271–311 (1987)

    Google Scholar 

  60. Iwata, S., Tabuchi, T., Warkentin, B.P., et al.: Soil-water interactions—mechanisms and applications. Marcel Dekker Inc., New York, NY (1988)

    Google Scholar 

  61. Jang, J., Santamarina, J.C.: Fines classification based on sensitivity to pore-fluid chemistry. J. Geotech. Geoenviron. Eng. 142(4), 06015018 (2016)

    Google Scholar 

  62. Javadpour, F., Fisher, D., Unsworth, M. et al.: Nanoscale gas flow in shale gas sediments. J. Can. Pet. Technol. 46(10), (2007)

    Google Scholar 

  63. Johnson, L.D.: Evaluation of laboratory suction tests for prediction of heave in foundation soils, Department of Defense, Department of the Army, Corps of Engineers, Waterways Experiment Station, Soils and Pavements Laboratory (1977)

    Google Scholar 

  64. Jury, W.A., Wang, Z., Tuli, A.: A conceptual model of unstable flow in unsaturated soil during redistribution. Vadose Zone J. 2(1), 61–67 (2003)

    Google Scholar 

  65. Keren, R., Shainberg, I.: Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems: I, homoionic clay. Clays Clay Miner. 23(3), 193–200 (1975)

    Google Scholar 

  66. Khalili, N., Geiser, F., Blight, G.: Effective stress in unsaturated soils: review with new evidence. Int. J. Geomech. 4(2), 115–126 (2004)

    Google Scholar 

  67. Khalili, N., Khabbaz, M.: A unique relationship of chi for the determination of the shear strength of unsaturated soils. Geotechnique 48(5), 681–687 (1998)

    Google Scholar 

  68. Khorshidi, M., Lu, N.: Intrinsic relation between soil water retention and cation exchange capacity. J. Geotech. Geoenviron. Eng. 143(4), 04016119 (2016)

    Google Scholar 

  69. Knight, R., Chapman, A., Knoll, M.: Numerical modeling of microscopic fluid distribution in porous media. J. Appl. Phys. 68(3), 994–1001 (1990)

    Google Scholar 

  70. Kramer, H.: Sand mixtures and sand movement in fluvial models. ASCE Trans. 100 (1935)

    Google Scholar 

  71. Laird, D.A.: Influence of layer charge on swelling of smectites. Appl. Clay Sci. 34(1), 74–87 (2006)

    Google Scholar 

  72. Langbein, D., Grossbach, R., Heide, W.: Parabolic flight experiments on fluid surfaces and wetting. Appl. Microgravity Technol. 2, 198–211 (1990)

    Google Scholar 

  73. Lawson, W.D.: A survey of geotechnical practice for expansive soils in Texas. Unsaturated Soils 2006, 304–314 (2006)

    Google Scholar 

  74. Lazari, M., Sanavia, L., Schrefler, B.: Local and non-local elasto-viscoplasticity in strain localization analysis of multiphase geomaterials. Int. J. Numer. Anal. Meth. Geomech. 39(14), 1570–1592 (2015)

    Google Scholar 

  75. Lebeau, M., Konrad, J.-M.: A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 46(12) (2010)

    Google Scholar 

  76. Likos, W.J.: Measurement of crystalline swelling in expansive clay. Geotech. Test. J. 27(6), 540–546 (2004)

    Google Scholar 

  77. Likos, W.J.: Effective stress in unsaturated soil: accounting for surface tension and interfacial area. Vadose Zone J. 13(5) (2014)

    Google Scholar 

  78. Likos, W.J., Lu, N.: Water vapor sorption behavior of smectite-kaolinite mixtures. Clays Clay Miner. 50(5), 553–561 (2002)

    Google Scholar 

  79. Likos, W.J., Lu, N.: Automated humidity system for measuring total suction characteristics of clay. Geotech. Test. J. 26(2), 178–189 (2003)

    Google Scholar 

  80. Likos, W.J., Lu, N.: Pore-scale analysis of bulk volume change from crystalline interlayer swelling in Na+- and Ca2+-smectite. Clays Clay Miner. 54(4), 515–528 (2006)

    Google Scholar 

  81. Likos, W.J., Lu, N., Wenszel, W.: Performance of a dynamic dew point method for moisture isotherms of clays. Geotech. Test. J. 34(4), 373–382 (2011)

    Google Scholar 

  82. Likos, W.J., Wayllace, A.: Porosity evolution of free and confined bentonites during interlayer hydration. Clays Clay Miner. 58(3), 399–414 (2010)

    Google Scholar 

  83. Lin, B.: A comprehensive investigation on microscale properties and macroscopic behavior of natural expansive soils, Thesis, The University of Oklahoma (2012)

    Google Scholar 

  84. Lin, B., Cerato, A.B.: Prediction of expansive soil swelling based on four micro-scale properties. Bull. Eng. Geol. Env. 71(1), 71–78 (2012)

    Google Scholar 

  85. Liu, S., Harpalani, S.: A new theoretical approach to model sorption-induced coal shrinkage or swelling. AAPG Bulletin 97(7), 1033–1049 (2013)

    Google Scholar 

  86. Liu, S., Harpalani, S.: Compressibility of sorptive porous media: Part I—background and theory. AAPG Bulletin 98(9), 1761–1772 (2014)

    Google Scholar 

  87. Liu, S., Harpalani, S.: Compressibility of sorptive porous media: Part II–experimental study on coal. AAPG Bulletin 98(9), 1773–1788 (2014)

    Google Scholar 

  88. Liu, W.K., Karpov, E.G., Park, H.S.: Nano Mechanics and Materials: Theory, Multiscale Methods and Applications. Wiley & Sons (2006)

    Google Scholar 

  89. Low, P.F.: The swelling of clay: I. montmorillonites. Soil Sci. Soc. Am. J. 44(4), 667–676 (1980)

    Google Scholar 

  90. Lu, N.: Generalized soil water retention equation for adsorption and capillarity. J. Geotech. Geoenviron. Eng. 142(10), 04016051 (2016)

    Google Scholar 

  91. Lu, N., Dong, Y.: Correlation between soil-shrinkage curve and water-retention characteristics. J. Geotech. Geoenviron. Eng. 143(9), 04017054 (2017)

    Google Scholar 

  92. Lu, N., Dong, Y.: Vapor condensation technique for measuring stress-strain relation of unsaturated soil. J. Geotech. Geoenviron. Eng. 143(6), 02817002 (2017)

    Google Scholar 

  93. Lu, N., Godt, J.W., Wu, D.T.: A closed-form equation for effective stress in unsaturated soil. Water Resour. Res. 46(5) (2010)

    Google Scholar 

  94. Lu, N., Kaya, M.: A drying cake method for measuring suction-stress characteristic curve, soil–water-retention curve, and hydraulic conductivity function. Geotech. Test. J. 36(1), 1–19 (2013)

    Google Scholar 

  95. Lu, N., Kaya, M., Godt, J.W.: Interrelations among the soil-water retention, hydraulic conductivity, and suction-stress characteristic curves. J. Geotech. Geoenviron. Eng. 140(5), 04014007 (2014)

    Google Scholar 

  96. Lu, N., Khorshidi, M.: Mechanisms for soil-water retention and hysteresis at high suction range. J. Geotech. Geoenviron. Eng. 141(8), 04015032 (2015)

    Google Scholar 

  97. Lu, N., Kim, T.-H., Sture, S., Likos, W.J.: Tensile strength of unsaturated sand. J. Eng. Mech. 135(12), 1410–1419 (2009)

    Google Scholar 

  98. Lu, N., Likos, W.J.: Unsaturated Soil Mechanics. Wiley (2004)

    Google Scholar 

  99. Lu, N., Likos, W.J.: Suction stress characteristic curve for un-saturated soil. J. Geotech. Geoenviron. Eng. 132(2), 131–142 (2006)

    Google Scholar 

  100. Lu, N., Zeidman, B.D., Lusk, M.T., Willson, C.S., Wu, D.T.: A Monte Carlo paradigm for capillarity in porous media. Geophys. Res. Lett. 37(23) (2010)

    Google Scholar 

  101. McKeen, R.: A model for predicting expansive soil behavior: proceedings of the 7th international conference on expansive soils, Dallas, TX American Society of Civil Engineers Geotechnical Division, pp. 1–6 (1992)

    Google Scholar 

  102. McKeen, R.G., Nielsen, J.P.: Characterization of expansive soils for airport pavement design. Technical report, University of New Mexico, Eric H Wang Civil Engineering Research Facility (1978)

    Google Scholar 

  103. Merry, S.M., Kavazanjian Jr., E., Fritz, W.U.: Reconnaissance of the July 10, 2000, Payatas Landfill failure. J. Performance Constr. Facil. 19(2), 100–107 (2005)

    Google Scholar 

  104. Mitchell, J.: Fundamentals of Soil Behavior. Wiley and Sons Inc., New York (1993)

    Google Scholar 

  105. Mitchell, J.K., Soga, K., et al.: Fundamentals of Soil Behavior, 3rd edn. John Wiley & Sons Inc., New Jersey (2005)

    Google Scholar 

  106. Monje, O., Stutte, G., Wang, H., Kelly, C.: Nds water pressures affect growth rate by changing leaf area, not single leaf photosynthesis, Technical report, SAE Technical Paper (2001)

    Google Scholar 

  107. Mooney, R., Keenan, A., Wood, L.: Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by x-ray diffraction. J. Am. Chem. Soc. 74(6) 1371–1374 (1952)

    Google Scholar 

  108. Morgenstern, N., Balasubramonian, B.: Effects of pore fluid on the swelling of clay-shale, pp. 190–205. Expansive Soils, ASCE (1980)

    Google Scholar 

  109. Muhunthan, B.: Liquid limit and surface area of clays. Chem. Clays Clay Min. 6, 237–274 (1991)

    Google Scholar 

  110. Nelson, J., Miller, D.J.: Expansive soils: problems and practice in foundation and pavement engineering. Wiley & Sons Inc., New Jersey (1997)

    Google Scholar 

  111. Newman, A.: The interaction of water with clay mineral surfaces. Chem. Clays Clay Min. 6, 237–274 (1987)

    Google Scholar 

  112. Nieber, J.L., Dautov, R.Z., Egorov, A.G., Sheshukov, A.Y., et al.: Dynamic capillary pressure mechanism for instability in gravity-driven flows; review and extension to very dry conditions. Transp. Porous Media 58(1–2), 147–172 (2005)

    MathSciNet  Google Scholar 

  113. Nixon, J.: Discrete ice lens theory for frost heave in soils. Can. Geotech. J. 28(6), 843–859 (1991)

    Google Scholar 

  114. Norrish, K.: The swelling of montmorillonite. Discuss. Faraday Soc. 18, 120–134 (1954)

    Google Scholar 

  115. Or, D., Tuller, M.: Liquid retention and interfacial area in variably saturated porous media: upscaling from single-pore to sample-scale model. Water Resour. Res. 35(12), 3591–3605 (1999)

    Google Scholar 

  116. Peric, D., Zhao, G., Khalili, N.: Strain localization in unsaturated elastic-plastic materials subjected to plane strain compression. J. Eng. Mech. 140(7), 0401405 (2014)

    Google Scholar 

  117. Petersen, L.W., Moldrup, P., Jacobsen, O.H., Rolston, D.: Relations between specific surface area and soil physical and chemical properties. Soil Sci. 161(1), 9–21 (1996)

    Google Scholar 

  118. Pillalamarry, M., Harpalani, S., Liu, S.: Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs. Int. J. Coal Geol. 86(4), 342–348 (2011)

    Google Scholar 

  119. Reddi, L.N., Xiao, M., Steinberg, S.L.: Discontinuous pore fluid distribution under microgravity-kc-135 flight investigations. Soil Sci. Soc. Am. J. 69(3), 593–598 (2005)

    Google Scholar 

  120. Rethore, J., De Borst, R., Abellan, M.-A.: A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. Comput. Mech. 42(2), 227–238 (2008)

    MATH  Google Scholar 

  121. Revil, A., Lu, N.: Unified water isotherms for clayey porous materials. Water Resour. Res. 49(9), 5685–5699 (2013)

    Google Scholar 

  122. Rexer, T.F., Benham, M.J., Aplin, A.C., Thomas, K.M.: Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy Fuels 27(6), 3099–3109 (2013)

    Google Scholar 

  123. Rieke, R.D.: The role of specific surface area and related index properties in the frost susceptibility of soils. Thesis, Oregon State University (1982)

    Google Scholar 

  124. Romero, E., Simms, P.H.: Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotech. Geol. Eng. 26(6), 705–727 (2008)

    Google Scholar 

  125. Ross, G.: Relationships of specific surface area and clay content to shrink-swell potential of soils having different clay mineralogical compositions. Can. J. Soil Sci. 58(2), 159–166 (1978)

    Google Scholar 

  126. Rudnicki, J.W., Rice, J.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23(6), 371–394 (1975)

    Google Scholar 

  127. Saffman, P.G., Taylor, G.: The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquid. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 245, The Royal Society, pp. 312–329 (1958)

    Google Scholar 

  128. Santamarina, J.C., Klein, A., Fam, M.A.: Soils and waves: particulate materials behavior, characterization and process monitoring. J. Soils Sediments 1(2), 130 (2001)

    Google Scholar 

  129. Schiava, R., Etse, G.: Constitutive modeling and discontinuous bifurcation assessment in unsaturated soils. J. Appl. Mech. 73(6), 1039–1044 (2006)

    MATH  Google Scholar 

  130. Seed, H.B., Woodward, R.J., Lundgren, R.: Prediction of swelling potential for compacted clays. Trans. Am. Soc. Civ. Eng. 128(1), 1443–1477 (1962)

    Google Scholar 

  131. Shields, A.: Application of similarity principles and turbulence research to bed-load movement. California Institute of Technology, Pasadena, CA (1936). (translated from German)

    Google Scholar 

  132. Simons, D.B., Richardson, E.V.: Resistance to flow in alluvial channels. US Government Printing Office (1966)

    Google Scholar 

  133. Song, X.: Strain localization in unsaturated porous media, Ph.D. Thesis, Stanford University (2014)

    Google Scholar 

  134. Song, X.: Transient bifurcation condition of partially saturated porous media at finite strain. Int. J. Numer. Anal. Meth. Geomech. 41(1), 135–156 (2017)

    Google Scholar 

  135. Song, X.: A physical based multi-scale computational framework for triphasic geomaterials. In: White paper and presentation, NSF Workshop on Geotechnical Fundamentals in The Face of New World Challenges, National Science Foundation (2016)

    Google Scholar 

  136. Song, X., Borja, R.I.: Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone J. 13(5), 1 (2014)

    Google Scholar 

  137. Song, X., Borja, R.I.: Mathematical framework for unsaturated flow in the finite deformation range. Int. J. Numer. Meth. Eng. 97(9), 658–682 (2014)

    MathSciNet  MATH  Google Scholar 

  138. Song, X., Borja, R. I., Wu, W.: Triggering a shear band in variably saturated porous materials. In: Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, pp. 367–370 (2013)

    Google Scholar 

  139. Song, X., Idinger, G., Borja, R.I., Wu, W.: Finite element simulation of strain localization in unsaturated soils. Unsaturated Soils: Research and Applications, pp. 189–195 (2012)

    Google Scholar 

  140. Song, X., Wang, K., Ye, M.: Localized failure in unsaturated soils under non-isothermal conditions. Acta Geotechnica, pp. 1–13 (2017)

    Google Scholar 

  141. Song, X., Ye, M., Wang, K.: Strain localization in a solid-water-air system with random heterogeneity via stabilized mixed finite elements. Int. J. Numer. Methods Eng. 112, 1926 (2017)

    MathSciNet  Google Scholar 

  142. Song, X., Zhang, K., Wang, M.: Molecular dynamics modeling of a partially saturated clay-water system at finite temperature. Int. J. Numer. Anal. Methods Geomech., In submission (2017)

    Google Scholar 

  143. Sposito, G., et al.: The thermodynamics of soil solutions. Oxford University Press, Oxford (1981)

    Google Scholar 

  144. Stutte, G., Monje, O., Anderson, S.: Wheat (triticum aesativum l. cv. usu apogee) growth onboard the international space station (ISS): Germination and early development. Proc. Plant Growth Regul. Soc. Am. 30, 66–71 (2003)

    Google Scholar 

  145. Sudibandriyo, M., Pan, Z., Fitzgerald, J.E., Robinson, R.L., Gasem, K.A.: Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa. Langmuir 19(13), 5323–5331 (2003)

    Google Scholar 

  146. Taylor, G.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, I. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 201, The Royal Society, pp. 192–196 (1950)

    Google Scholar 

  147. Teich-McGoldrick, S.L., Greathouse, J.A., Cygan, R.T.: Molecular dynamics simulations of structural and mechanical properties of muscovite: Pressure and temperature effects. J. Phys. Chem. C 116(28), 15099–15107 (2012)

    Google Scholar 

  148. Thoman, R.W., Niezgoda, S.L.: Determining erodibility, critical shear stress, and allowable discharge estimates for cohesive channels: case study in the powder river basin of Wyoming. J. Hydraul. Eng. 134(12), 1677–1687 (2008)

    Google Scholar 

  149. Tison, L.: Studies of the critical tractive force of entrainment of bed materials. Proceedings: Minnesota International Hydraulics Conference, Minneapolis, MN (1953)

    Google Scholar 

  150. Tuller, M., Or, D., Dudley, L.M.: Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35(7), 1949–1964 (1999)

    Google Scholar 

  151. Van Olphen, H.: Thermodynamics of interlayer adsorption of water in clays. J. Colloid Sci. 20(8), 822–837 (1965)

    Google Scholar 

  152. Van Olphen, H.: Clay colloid chemistry (reprinted edition) (1991)

    Google Scholar 

  153. Vanoni, V.A.: Sedimentation engineering, ASCE manuals and reports on engineering practice No. 54, American Society of Civil Engineers, New York, NY (1975)

    Google Scholar 

  154. Vardoulakis, I.: Deformation of water-saturated sand: II. Effect of pore water flow and shear banding. Geotechnique 46(3), 457–472 (1996)

    Google Scholar 

  155. Wang, S., Elsworth, D., Liu, J.: A mechanistic model for permeability evolution in fractured sorbing media. J. Geophys. Res. Solid Earth 117(B6) (2012)

    Google Scholar 

  156. Wang, Y., Liu, S.: Estimation of pressure-dependent diffusive permeability of coal using methane diffusion coefficient: laboratory measurements and modeling. Energy Fuels 30(11), 8968–8976 (2016)

    Google Scholar 

  157. Wang, Z., Feyen, J., Elrick, D.E.: Prediction of fingering in porous media. Water Resour. Res. 34(9), 2183–2190 (1998)

    Google Scholar 

  158. Wang, Z., Tuli, A., Jury, W.A.: Unstable flow during redistribution in homogeneous soil. Vadose Zone J. 2(1), 52–60 (2003)

    Google Scholar 

  159. Weinan, E.: Principles of Multiscale Modeling. Cambridge University Press (2011)

    Google Scholar 

  160. White, C.: The equilibrium of grains on the bed of a stream. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp. 322–338 (1940)

    Google Scholar 

  161. Wynn, T.M., Mostaghimi, S., Alphin, E.F. et al.: The effects of vegetation on stream bank erosion. In: 2004 ASAE Annual Meeting, American Society of Agricultural and Biological Engineers, p. 1 (2004)

    Google Scholar 

  162. Xiao, M., Reddi, L.N., Syeinberg, S.L.: Variation of water retention characteristics due to particle rearrangement under zero gravity. Int. J. Geomech. https://doi.org/10.1061/(asce)1532-3641. 9, 4(179) (2009)

  163. Yong, R.: Soil suction and soil-water potentials in swelling clays in engineered clay barriers. Eng. Geol. 54(1), 3–13 (1999)

    Google Scholar 

  164. Zeidman, B.D., Lu, N., Wu, D.: Coarse-grained Monte Carlo simulation of the distribution and capillarity of multiple fluids in porous media, Pore Scale Phenomena: Frontiers in Energy and Environment. In: J. Poate, T. Illangasekare, H. Kazemi, and R. Kee (Eds.) (World Scientific, Singapore, 2015) pp. 263–278 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Likos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Likos, W.J., Song, X., Xiao, M., Cerato, A., Lu, N. (2019). Fundamental Challenges in Unsaturated Soil Mechanics. In: Lu, N., Mitchell, J. (eds) Geotechnical Fundamentals for Addressing New World Challenges. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-06249-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06249-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06248-4

  • Online ISBN: 978-3-030-06249-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics