Skip to main content

Bio-mediated and Bio-inspired Geotechnics

  • Chapter
  • First Online:
Geotechnical Fundamentals for Addressing New World Challenges

Abstract

Bio-mediated geotechnics, wherein biogeochemical processes are employed to directly modify the engineering properties of soil, and bio-inspired geotechnics, wherein natural biological systems provide inspiration for the development of novel geotechnical solutions, provide two complimentary opportunities for geotechnical engineering innovation. The field of bio-mediated geotechnics has been developing for more than one decade while the field of bio-inspired geotechnics is just now emerging. Both domains require geotechnical engineers to reconsider the importance and role of biology and biological systems in geotechnical engineering. This chapter provides the context and general principles for these emerging fields followed by specific examples of both fields. The importance of sustainability and how these fields can contribute to sustainable development is discussed. The chapter concludes by briefly addressing some of the steps required for biogeotechnics to become a recognized sub-discipline within the domain of geotechnical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Qabany, A., Soga, K.: Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique 63(4), 331–339 (2013). https://doi.org/10.1680/geot.SIP13.P.022

    Article  Google Scholar 

  2. Allison, L.E.: Effect of microorganisms on permeability of soil under prolonged submergence. Soil Sci. 63(6), 439–450 (1947)

    Article  Google Scholar 

  3. Basu, D., Misra, A., Puppala, A.J.: Sustainability and geotechnical engineering: perspectives and review. Can. Geotech. J. 52(1), 96–113 (2014)

    Article  Google Scholar 

  4. Baum, M.J., Kovalev, A.E., Michels, J., Gorb, S.N.: Anisotropic friction of the ventral scales in the snake lampropeltis getula californiae. Tribol. Lett. 54(2), 139–150 (2014)

    Article  Google Scholar 

  5. Benini, S., Rypniewski, W.R., Wilson, K.S., Miletti, S., Ciurli, S., Mangani, S.: A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 7(2), 205–216 (1999)

    Article  Google Scholar 

  6. Benyus, J.M.: Biomimicry: innovation inspired by nature. William Morrow & Company, New York, NY. ISBN 978-0-688-16099-9 (1997)

    Google Scholar 

  7. Benyus, J.M.: Foreword: curating natures patent database. In’: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design-Computational Methods and Tools, vii–xi (2014)

    Google Scholar 

  8. Chou, C.W., Aydilek, A., Seagren, E., Maugel, T.: Bacterially-induced calcite precipitation via ureolysis (2008)

    Google Scholar 

  9. Chou, C.W., Seagren, E.A., Aydilek, A.H., Lai, M.: Bio-calcification of sand through ureolysis. J. Geotech. Geoenviron. Eng. 137(12), 1179–1189 (2011)

    Article  Google Scholar 

  10. Chu, J., Ivanov, V., He, J., Naeimi, M., Li, B., Stabnikov, V.: Development of microbial geotechnology in Singapore. In: Geo-Frontiers 2011: Advances in Geotechnical Engineering, pp. 4070–4078 (2011)

    Google Scholar 

  11. Coutts, M., Nielsen, C., Nicoll, B.: The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant Soil 217(1–2), 1–15 (1999)

    Article  Google Scholar 

  12. Cunningham, A.B., Characklis, W.G., Abedeen, F., Crawford, D.: Influence of biofilm accumulation on porous media hydrodynamics. Environ. Sci. Technol. 25(7), 1305–1311 (1991)

    Article  Google Scholar 

  13. Damians, I.P., Bathurst, R.J., Adroguer, E.G., Josa, A., Lloret, A.: Environmental assessment of earth retaining wall structures. Environ. Geotech. 4(6), 415–431 (2016)

    Article  Google Scholar 

  14. Day, J.L., Ramakrishnan, V., Bang, S.S.: Microbiologically induced sealant for concrete crack remediation. In: Processing of 16th Engineering Mechanics Conference, pp. 1–8. Seattle, America (2003)

    Google Scholar 

  15. DeJong, J., Mortensen, B., Martinez, B.: Bio-soils interdisciplinary science and engineering initiative. In: Final Report on Workshop, 84 pp. National Science Foundation, Arlingon, VA, USA (2007)

    Google Scholar 

  16. DeJong, J. T., Burrall, M., Wilson, D. W., Frost, J. D.: A Bio-inspired perspective for geotechnical engineering innovation. In: Geotechnical Frontiers: Geotechnical Materials, Modeling, and Testing, pp. 862–870 (2017)

    Google Scholar 

  17. DeJong, J.T., Fritzges, M.B., Nusslein, K.: Microbial induced cementation to control sand response to undrained shear. ASCE J. Geotech. Geoenviron. Eng. 132(11), 1381–1392 (2006)

    Article  Google Scholar 

  18. DeJong, J.T., Mortensen, M.B., Martinez, B.C., Nelson, D.C.: Bio-mediated soil improvement. Ecol. Eng. 36(2), 197–210 (2010)

    Article  Google Scholar 

  19. DeJong, J.T., Soga, K., Banwart, S.A., Whalley, W.R., Ginn, T., Nelson, D.C., Mortensen, B.M., Martinez, B.C., Barkouki, T.: Soil engineering in vivo: harnessing natural bio-geochemical systems for sustainable, multi-functional engineering solutions. J. R. Soc. Interface 8(54), 1–15 (2011)

    Article  Google Scholar 

  20. DeJong, J.T., Soga, K.S., Kavazanjian, E., Burns, S., van Paassen, L., Al Qabany, A., Aydilek, A., Bang, S.S., Burbank, M., Caslake, L., Chen, C.Y., Cheng, X., Chu, J., Ciurli, S., Fauriel, S., Filet, A.E., Hamdan, N., Hata, T., Inagaki, Y., Jefferis, S., Kuo, M., Laloui, L., Larrahondo, J., Manning, D.A.C., Martinez, B., Montoya, B.M., Nelson, D.C., Palomino, A., Renforth, P., Santamarina, J.C., Seagren, E.A., Tanyu, B., Tsesarsky, M., Weaver, T.: Bio-geochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique 63(4), 287–301 (2013)

    Google Scholar 

  21. Esnault-Filet, A., Gadret, J.P., Loygue, M., Borel, S.: Biocalcis and its application for the consolidation of sands. In: Johnsen, L.F., Bruce, D.A., Byle, M.J. (eds.) Grouting and deep mixing, Geotechnical Special Publication 288, vol. 2, pp. 1767–1780. ASCE, Reston, VA, USA (2012)

    Google Scholar 

  22. Fauriel, S.: Bio-chemo-hydro-mechanical modeling of soils in the framework of microbial induced calcite precipitation. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Switzerland (2012)

    Google Scholar 

  23. Frankenberger, W.T., Troeh, F.R., Dumenil, L.C.: Bacterial effects on hydraulic conductivity of soils. Soil Sci. Soc. Am. J. 43(2), 333–338 (1979)

    Article  Google Scholar 

  24. Frost, J.D., Martinez, A., Mallett, S.D., Roozbahani, M.M., DeJong, J.T.: Intersection of modern soil mechanics with ants and roots. In: Geotechnical Frontiers 2017: Geotechnical Materials, Modeling, and Testing, pp. 862–870 (2017)

    Google Scholar 

  25. Goel, A.K., Vattam, S., Wiltgen, B., Helms, M.: Information-processing theories of biologically inspired design. In: Biologically Inspired Design, pp. 127–152. Springer (2014)

    Google Scholar 

  26. Gomez, M.G., Anderson, C.M., Graddy, C.M., DeJong, J.T., Nelson, D.C., Ginn, T.R.: Large-scale comparison of bio-augmentation and biostimulation approaches for biocementation of sands. J. Geotech. Geoenviron. Eng. 143(5), 04016124 (2017)

    Google Scholar 

  27. Gomez, M.G., DeJong, J., Anderson, C.M.: Effect of biocementation on geophysical and cone penetration measurements in sands. Can. Geotech. J., in press (2018)

    Google Scholar 

  28. Graddy, C.M., Gomez, M.G., Kline, L.M., Morrill, S.R., DeJong, J.T., Nelson, D.C.: Diversity of Sporosarcina-like bacterial strains obtained from meter-scale augmented and stimulated biocementation experiments. Environ. Sci. Technol. 52(7), 3997–4005 (2018)

    Article  Google Scholar 

  29. Hata, T., Tsukamoto, M., Inagaki, Y., Mori, H., Kuwano, R., Gourc, J.: Evaluation of multiple soil improvement techniques based on microbial functions. In: Geo-Frontiers 2011: Advances in Geotechnical Engineering, ASCE Geotechnical Special Publication 211, pp. 3945–3955, Dallas, TX (2011)

    Google Scholar 

  30. Horvath, A.: Construction materials and the environment. Annu. Rev. Environ. Resour. 29, 181–204 (2004)

    Article  Google Scholar 

  31. Hoskins, B.C., Fevang, L., Majors, P.D., Sharma, M.M., Georgiou, G.: Selective imaging of biofilms in porous media by NMR relaxation. J. Magn. Reson. 139(1), 67–73 (1999)

    Article  Google Scholar 

  32. Ivanov, V.: Microbial geotechniques. Environmental microbiology for engineers. CRC Press, Boca Raton, FL, USA. pp. 279–286 (2010)

    Google Scholar 

  33. Ivanov, V., Chu, J.: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Bio/Technol. 7(2), 139–153 (2008)

    Article  Google Scholar 

  34. ISO (International Organization for Standardization): ISO 14044:2006: Environmental management—life cycle assessment—requirements and guidelines. ISO, Geneva, Switzerland (2006)

    Google Scholar 

  35. Karol, R.H.: Chemical grouting and soil stabilization, p. 558. Marcel Dekker, New York, NY, USA (2003)

    Google Scholar 

  36. Kavazanjian, E., Hamdan, N.: Enzyme induced carbonate precipitation (EICP) columns for ground improvement. In: International Foundation Congress and Equipment Exposition (IFCEE 2015), pp. 2252–2261. ASCE Geotechnical Special Publication. https://doi.org/10.1061/9780784479087.209 (2015)

  37. Kavazanjian, Jr. E., Almajed, A., Hamdan, N.: Bio-inspired soil improvement using EICP soil columns and soil nails. In: Proceedings of Grouting 2017, ASCE. https://doi.org/10.1061/9780784480793.002 (2017)

  38. Kavazanjian, E. Jr., Karatas, I.: Microbiological improvement of the physical properties of soil. In: Proceedings of the 6th International Conference on Case Histories in Geotechincal Engineering, Rolla, MO (CD-ROM) (2008)

    Google Scholar 

  39. Kendall, A., Raymond, A.J., Tipton, J., DeJong, J.T.: Review of life-cycle-based environmental assessments of geotechnical systems. In: Engineering Sustainability, vol. 171, pp. 57–67. Thomas Telford Ltd. (2017)

    Google Scholar 

  40. Kibert, C.J.: Sustainable construction: green building design and delivery, 4th edn. Wiley, New Jersey (2016)

    Google Scholar 

  41. Martinez, A., Palumbo, S.: Anisotropic shear behavior of soil-structure interfaces: bio-inspiration from snake skin. In: In Proceedings for International Foundations Congress and Equipment Expo, pp. 94–104, Orlando, FL (2018)

    Google Scholar 

  42. Martinez, B.: Experimental and numerical upscaling of MICP for soil improvement. Doctoral dissertation, University of California, Davis, CA, USA (2012)

    Google Scholar 

  43. Martinez, B., DeJong, J., Ginn, T., Montoya, B., Barkouki, T., Hunt, C., Tanyu, B., Major, D.: Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J. Geotech. Geoenviron. Eng. 139(4), 587–598 (2013)

    Article  Google Scholar 

  44. Martinez, B.C., DeJong, J.T.: Bio-mediated soil improvement: load transfer mechanisms at the micro-and macro-scales. In: Advances in Ground Improvement: Research to Practice in the United States and China, pp. 242–251 (2009)

    Google Scholar 

  45. Martınez, A.J., O’Hara, K.: Monotonic and cyclic centrifuge testing of snake skin-inspired piles. Submitted for publication in 2019 GeoCongress. Philadelphia, PA (2019)

    Google Scholar 

  46. Martinez, A., Palumbo, S.: Anisotropic load transfer mechanisms at bio-inspired soil-structure interfaces. Submitted for possible publication in J. Geotechn. Geoenviron. Eng. (2019)

    Google Scholar 

  47. Marvi, H., Hu, D.L.: Friction enhancement in concertina locomotion of snakes. J. R. Soc. Interface 9, 3067–3080 (2012)

    Article  Google Scholar 

  48. Mickovski, S.B., Bengough, A.G., Bransby, M.F., Davies, M.C.R., Hallett, P.D., Sonnenberg, R.: Material stiffness, branching pattern and soil matric potential affect the pull out resistance of model root systems. Eur. J. Sci. 58, 1471–1481 (2007)

    Google Scholar 

  49. Mitchell, J.K., Santamarina, J.C.: Biological considerations in geotechnical engineering. J. Geotech. Geoenviron. Eng. 131(10), 1222–1233 (2005)

    Article  Google Scholar 

  50. Mitchell, J.K.: Fundamentals of Soil Behavior. Wiley, New York, NY, USA (1975)

    Google Scholar 

  51. Montoya, B., DeJong, J.: Stress-strain behavior of sands cemented by microbially induced calcite precipitation. J. Geotech. Geoenviron. Eng. 141(6), 04015019 (2015)

    Google Scholar 

  52. Mortensen, B.M., Haber, M., DeJong, J.T., Caslake, L.F., Nelson, D.C.: Effects of environmental factors on microbial induced calcite precipitation. J. Appl. Microbiol. 111(2), 338–349 (2011)

    Article  Google Scholar 

  53. Nature Reviews Editorial: Microbiology by numbers. Nat. Rev. Microbiol. 9, 628 (2011). https://doi.org/10.1038/nrmicro2644

    Article  Google Scholar 

  54. O’Donnell, S.T., Rittmann, B.E., Kavazanjian Jr.: Liquefaction mitigation via microbial denitrification as a two-stage process. Stage I: desaturation. J. Geotech. Geoenviron. Eng. 143(12), 04017094. https://doi.org/10.1061/(asce)gt.1943-5606.0001818, December (2017)

  55. Proto, C., DeJong, J., Nelson, D.: Bio-mediated permeability reduction of saturated sands. J. Geotech. Geoenviron. Eng. 142(12), 04016073 (2016)

    Google Scholar 

  56. Qabany Al, A.: Microbial carbonate precipitation in soils. Doctoral dissertation, University of Cambridge, UK (2011)

    Google Scholar 

  57. Raiders, R., McInerney, M., Revus, D., Torbati, H., Knapp, R., Jenneman, G.: Selectivity and depth of microbial plugging in Berea sandstone cores. J. Ind. Microbiol. 1(3), 195–203 (1986)

    Article  Google Scholar 

  58. Raymond, A.J., Pinkse, M.A., Kendall, A., DeJong, J.T.: Life-cycle assessment of ground improvement alternatives for the Treasure Island, California, redevelopment. In: Geotechnical Frontiers 2017, pp. 345–354, Orlando, FL (2017)

    Google Scholar 

  59. Rusu, C., Cheng, X.H., Li, M.: Biological clogging in Tangshan sand columns under salt water intrusion by Sporosarcina pasteurii. Adv. Mater. Res. 250, 2040–2046 (2011)

    Article  Google Scholar 

  60. Seagren, E.A., Aydilek, A.H.: Biomediated geomechanical processes. In: Mitchell, R., Gu, J.-D. (eds.) Environmental Micro-biology, 2nd edn, pp. 319–348. Wiley, Hoboken, NJ, USA (2010)

    Google Scholar 

  61. Sharp, R.R., Stoodley, P., Adgie, M., Gerlach, R., Cunningham, A.: Visualization and characterization of dynamic patterns of flow, growth and activity of biofilms growing in porous media. Water Sci. Technol. 52(7), 85–90 (2005)

    Article  Google Scholar 

  62. Stabnikov, V., Naeimi, M., Ivanov, V., Chu, J.: Formation of water-impermeable crust on sand surface using biocement. Cem. Concr. Res. 41(11), 1143–1149 (2011)

    Article  Google Scholar 

  63. Tagliaferri, F., Waller, J., Ando, E., Hall, S.A., Viggiani, G., Bésuelle, P., DeJong, J.T.: Observing strain localisation processes in bio-cemented sand using x-ray imaging. Granular Matter 13(3), 247–250 (2011)

    Google Scholar 

  64. Van Paassen, L.: Bio-mediated ground improvement: from laboratory experiment to pilot applications. In: Geo-Frontiers 2011: Advances in Geotechnical Engineering, ASCE Geotechnical Special Publication 211, pp. 4099–4108, Dallas, TX (2011)

    Google Scholar 

  65. Van Paassen, L.A., Ghose, R., van der Linden, T.J., van der Star, W.R., van Loosdrecht, M.C.: Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J. Geotech. Geoenviron. Eng. 136(12), 1721–1728 (2010)

    Article  Google Scholar 

  66. Van Paassen, L., Harkes, M., Van Zwieten, G., Van der Zon, W., Van der Star, W., Van Loosdrecht, M.: Scale up of biogrout: a biological ground reinforcement method. In: Proceedings of the 17th international conference on soil mechanics and geotechnical engineering, pp. 2328– 2333. Lansdale IOS Press (2009)

    Google Scholar 

  67. Vogel, S.: Cat’s Paws and Catapults: Mechanical Worlds of Nature and People. W. W. Norton & Company Inc, New York, NY (1998)

    Google Scholar 

  68. Wacey, D., Kilburn, M.R., Saunders, M., Cliff, J., Brasier, M.D.: Microfossils of sulfur metabolizing cells in 3.4 billion-year-old rocks of Western Australia. Nature Geosci. 4(10), 698–702 (2011)

    Google Scholar 

  69. Whiffin, V.S., van Paassen, L.A., Harkes, M.P.: Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24(5), 417–423 (2007)

    Article  Google Scholar 

  70. Whitman, W.B., Coleman, D.C., Wiebe, W.J.: Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. 95(12), 6578–6583 (1998)

    Article  Google Scholar 

  71. Xanthakos, P.P., Abramson, L.W., Bruce, D.A.: Ground Control and Improvement. Wiley, New York, NY (1994)

    Google Scholar 

Download references

Acknowledgements

The thoughts and ideas within this article have been informed and inspired by many individuals, but particularly by members of the NSF ERC Center for Bio-mediated and Bio-inspired Geotechnics, the Soil Interactions Laboratory at UC Davis, the Biogeotechnical Research Group at ASU, and collaborators who participated in the NSF-funded BioSoils workshops of 2007 and 2011. This material presented herein is in part based upon work supported in part by the National Science Foundation (NSF) under NSF CA No. EEC-1449501. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason T. DeJong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DeJong, J.T., Kavazanjian, E. (2019). Bio-mediated and Bio-inspired Geotechnics. In: Lu, N., Mitchell, J. (eds) Geotechnical Fundamentals for Addressing New World Challenges. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-06249-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06249-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06248-4

  • Online ISBN: 978-3-030-06249-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics