Skip to main content

Multiscale and Multiphysics Modeling of Soils

  • Chapter
  • First Online:
Geotechnical Fundamentals for Addressing New World Challenges

Abstract

This chapter addresses the multiscale and multiphysics modeling of soils explicitly. The presentation revolves around three main paradigms: continuum, discrete, and multiscale. The advantages and disadvantages of each of the paradigms are discussed and their particular developments are addressed. We show that continuum models are the backbone of current analysis at the engineering scale and furnish an appropriate framework to implement multiphysics couplings including thermal, hydraulic, mechanical, and chemical (THMC) effects. On the other side of the spectrum, discrete models have emerged and they are capable of capturing explicitly the discrete nature of granular soils. Progress has been made to make discrete models accurate. More recent developments include multiscale methods connecting continuum and discrete approaches. Multiscale methods show much promise and have been able to reproduce material behavior in the laboratory. We anticipate that future applications will demand more multi-scale and analysis of geologic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terzaghi, K., Peck, R.B., Mesri, G.: Soil Mechanics in Engineering Practice, 3rd edn. Wiley (1996)

    Google Scholar 

  2. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Google Scholar 

  3. Puzrin, A.M.: Constitutive modelling in geomechanics: introduction. Springer Science & Business Media (2012)

    Google Scholar 

  4. Borja, R.I.: Cam-Clay plasticity. part V: a mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Comput. Meth. Appl. Mech. Eng. 193(48–51), 5301–5338 (2004). https://doi.org/10.1016/j.cma.2003.12.067

  5. Voyiadjis, G.Z., Song, C.R.: The coupled theory of mixtures in geo-mechanics with applications. Springer, Berlin, New York (2006)

    Google Scholar 

  6. Skempton, A.W.: The pore-pressure coefficients a and b. Géotechnique 4(4), 143–147 (1954)

    Google Scholar 

  7. Bear, J.: Dynamics of fluids in porous media. Dover, New York (1988)

    Google Scholar 

  8. Forchheimer, P.H.: Wasserbewegung durch boden. Zeitz Ver Duetch Ing 45, 1782–1788 (1901)

    Google Scholar 

  9. Firdaouss, M., Guermond, J-L., Le QuéRé, P.: Nonlinear corrections to Darcy’s law at low reynolds numbers. J. Fluid Mech. 343, 331–350. (1997). https://doi.org/10.1017/S0022112097005843

  10. Adler, P.M., Malevich, A.E., Mityushev, V.V.: Nonlinear correction to Darcys law for channels with wavy walls. Acta Mech. 224(8), 1823–1848 (2013). https://doi.org/10.1007/s00707-013-0840-3

  11. Martin, G.R., Seed, H.B., Finn, W.D.L.: Fundamentals of liquefaction under cyclic loading. J. Geotech. Eng. Div. 101 (1975)

    Google Scholar 

  12. Byrne, P.M.: A cyclic shear-volume coupling and pore pressure model for sand. In: International Conferences on Recent Advances in Geotechnical Earthquake Engineering & Soil Dynamics (1991)

    Google Scholar 

  13. Andrade, J.E., Borja, R.I.: Capturing strain localization in dense sands with random density. Int. J. Numer. Meth. Eng. 67(11), 1531–1564 (2006). https://doi.org/10.1002/nme.1673

  14. Coulomb, C.A.: Essai sur une application des règles de maximis et minimis à quelques problèmes de statique relatifs à l’architecture. Mem. Div. Sav. Acad. 7, 343–382 (1773)

    Google Scholar 

  15. Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10(2), 157–165 (1952)

    Google Scholar 

  16. Roscoe, K.H., Schofield, A.N., Wroth, C.P.: On the yielding of soils. Géotechnique 8(1), 22–53 (1958). https://doi.org/10.1680/geot.1958.8.1.22

  17. Parry, R.H.G.: Strength and deformation of clay. Ph. D. Thesis, University of London (1956)

    Google Scholar 

  18. Roscoe, K.H., Schofield, A.N.: Mechanical behavior of an idealized ‘wet’ clay. In: Proceedings of the 3rd European Conference on Soil Mechanism, Wiesbaden, vol. 1, pp. 47–54 (1963)

    Google Scholar 

  19. Roscoe, K., Burland, J.B.: On the generalised stress-strain behaviour of wet clay. Eng. Plast. 535–609 (1968)

    Google Scholar 

  20. Been, K., Jefferies, M.G.: A state parameter for sands. Géotechnique 35(2), 99–112 (1985)

    Google Scholar 

  21. Jefferies, M.G.: Nor-sand: a simple critical state model for sand. Géotechnique 43(1), 91–103 (1993)

    Google Scholar 

  22. Yu, H.S.: CASM: A unified state parameter model for clay and sand. Int. J. Numer. Anal. Meth. Geomech. 22(8), 621–653 (1998). https://doi.org/10.1002/(SICI)1096-9853

  23. Kondner, R.L.: Hyperbolic stress-strain response: cohesive soils. J. Soil Mech. Found. Div. 89(1), 115–144 (1963)

    Google Scholar 

  24. Ramberg, W., Osgood, W.R.: Description of stress-strain curves by three parameters. National Advisory Committee for aeronautics Technical Note (1943)

    Google Scholar 

  25. Puzrin, A.M., Burland, J.B.: A logarithmic stress–strain function for rocks and soils. Géotechnique ue 46(1), 157–164 (1996). https://doi.org/10.1680/geot.1996.46.1.157

  26. Wood, D.M.: Soil behaviour and critical state soil mechanics. Cambridge university press, Cambridge, New York (1990)

    Google Scholar 

  27. Kolymbas, D.: A rate-dependent constitutive equation for soils. Mech. Res. Commun. 4(6), 367–372 (1977). https://doi.org/10.1016/0093-6413(77)90056-8

  28. Darve, F., Labanieh, S.: Incremental constitutive law for sands and clays: simulations of monotonic and cyclic tests. Int. J. Numer. Anal. Meth. Geomech. 6(2), 243–275 (1982). https://doi.org/10.1002/nag.1610060209

  29. Kolymbas, D.: An outline of hypoplasticity. Arch. Appl. Mech. 61(3), 143–151 (1991)

    Google Scholar 

  30. Desrues, J., Chambon, R.: A new rate type constitutive model for geomaterials: Cloe. In: Modern Approaches to Plasticity, pp. 309–324. Elsevier (1993)

    Google Scholar 

  31. Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found. 36(1), 1–12 (1996). https://doi.org/10.3208/sandf.36.1

  32. Kolymbas, D.: Constitutive modelling of granular materials. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  33. Ziegler, H.: An introduction to thermomechanics. North-Holland Publishing Company (1977)

    Google Scholar 

  34. Ziegler, H., Wehrli, C.: The derivation of constitutive relations from the free energy and the dissipation function. In: Advances in applied mechanics, pp. 183–238. Elsevier (1987)

    Google Scholar 

  35. Houlsby, G.T.: Study of plasticity theories and their applicability to soils. Ph.D. thesis, University of Cambridge (1981)

    Google Scholar 

  36. Houlsby, G.T.: A derivation of the small-strain incremental theory of plasticity from thermomechanics. In: Deformation and failure of granular materials. IUTAM symposium, Delft, pp. 109–118. Balkema (1982)

    Google Scholar 

  37. Collins, I.F., Houlsby, G.T.: Application of thermomechanical principles to the modelling of geotechnical materials. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 453, pp. 1975–2001. The Royal Society (1997). https://doi.org/10.1098/rspa.1997.0107

  38. Houlsby, G.T., Puzrin, A.M.: A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast 16(9), 1017–1047 (2000). https://doi.org/10.1016/S0749-6419(99)00073-X

  39. Houlsby, G.T., Puzrin, A.M.: Principles of hyperplasticity: an approach to plasticity theory based on thermodynamic principles. Springer-Verlag, London Limited (2006)

    Google Scholar 

  40. Collins, I.F., Kelly, P.A.: A thermomechanical analysis of a family of soil models. Géotechnique 52(7), 507–518 (2002). https://doi.org/10.1680/geot.2002.52.7.507

  41. Yu, H-S.: Plasticity and geotechnics. Springer-Verlag, New York (2006)

    Google Scholar 

  42. Mrǒz, Z., Norris, V.A., Zienkiewicz, O.C.: An anisotropic hardening model for soils and its application to cyclic loading. Int. J. Numer. Anal. Meth. Geomech. 2(3), 203–221 (1978). https://doi.org/10.1002/nag.1610020303

  43. Prevost, J.H.: Plasticity theory for soil stress-strain behavior. J. Eng. Mech. Div. 104(5), 1177–1194 (1978)

    Google Scholar 

  44. Dafalias, Y.F., Herrmann, L.R.: Bounding surface plasticity. ii: Application to isotropic cohesive soils. J. Eng. Mech. 112(12), 1263–1291 (1986)

    Google Scholar 

  45. Dafalias, Y.F., Manzari, M.T.: Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 130(6), 622–634 (2004)

    Google Scholar 

  46. Elgamal, A., Yang, Z., Parra, E.: Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dyn. Earthquake Eng. 22(4), 259–271 (2002). https://doi.org/10.1016/S0267-7261(02)00022-2

  47. Li, X.S., Dafalias, Y.F.: Anisotropic critical state theory: role of fabric. J. Eng. Mech. 138(3), 263–275 (2012). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000324

  48. Dafalias, Y.F., Taiebat, M.: Sanisand-z: zero elastic range sand plasticity model. Géotechnique 66(12), 999–1013 (2016). https://doi.org/10.1680/jgeot.15.P.271

  49. Prevost, J.H.: A simple plasticity theory for frictional cohesionless soils. Int. J. Soil Dyn. Earthquake Eng. 4(1), 9–17 (1985). https://doi.org/10.1016/0261-7277(85)90030-0

  50. Borja, R.I.: Cam-clay plasticity, part II: implicit integration of constitutive equation based on a nonlinear elastic stress predictor. Comput. Meth. Appl. Mech. Eng. 88(2), 225–240 (1991)

    Google Scholar 

  51. Manzari, M.T., Nour, M.A.: Significance of soil dilatancy in slope stability analysis. J. Geotech. Geoenviron. Eng. 126(1), 75–80 (2000)

    Google Scholar 

  52. Swan, C.C., Seo, Y-K.: Limit state analysis of earthen slopes using dual continuum/fem approaches. Int. J. Numer. Anal. Meth. Geomech. 23(12), 1359–1371 (1999)

    Google Scholar 

  53. Mroueh, H., Shahrour, I.: A full 3-D finite element analysis of tunneling–adjacent structures interaction. Comput. Geotech. 30(3), 245–253 (2003). https://doi.org/10.1016/S0266-352X(02)00047-2

  54. Lee, J.S, Pande, G.N.: Analysis of stone-column reinforced foundations. Int. J. Numer. Anal. Meth. Geomech. 22(12), 1001–1020 (1998)

    Google Scholar 

  55. Oka, F., Yashima, A., Shibata, T., Kato, M., Uzuoka, R.: FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model. Appl. Sci. Res. 52(3), 209–245 (1994). https://doi.org/10.1007/BF00853951

  56. Gallipoli, D., Wheeler, S.J, Karstunen, M.: Modelling the variation of degree of saturation in a deformable unsaturated soil. Géotechnique 53(1), 105–112 (2003). https://doi.org/10.1007/BF00853951

  57. Taiebat, M., Shahir, H., Pak, A.: Study of pore pressure variation during liquefaction using two constitutive models for sand. Soil Dyn. Earthquake Eng. 27(1), 60–72 (2007). https://doi.org/10.1016/j.soildyn.2006.03.004

  58. Andrade, J.E., Borja, R.I.: Modeling deformation banding in dense and loose fluid-saturated sands. Finite Elem. Anal. Des. 43(5), 361–383 (2007). https://doi.org/10.1016/j.finel.2006.11.012

  59. Mohammadnejad, T., Andrade, J.E.: Flow liquefaction instability prediction using finite elements. Acta Geotech. 10(1), 83–100 (2015). https://doi.org/10.1007/s11440-014-0342-z

  60. Mital, U., Mohammadnejad, T., Andrade, J.E.: Flow liquefaction instability as a mechanism for lower end of liquefaction charts. J. Geotech. Geoenviron. Eng. 143(9), 04017065 (2017). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001752

  61. Koliji, A., Lehmann, P., Vulliet, L., Laloui, L., Carminati, A., Vontobel, P., Hassanein, R.: Assessment of structural evolution of aggregated soil using neutron tomography. Water Resour. Res. 44(5) (2008). https://doi.org/10.1029/2007WR006297

  62. Anagnostopoulos, A.G., Kalteziotis, N., Tsiambaos, G.K., Kavvadas, M.: Geotechnical properties of the Corinth Canal marls. Geotech. Geol. Eng. 9(1), 1–26 (1991). https://doi.org/10.1007/BF00880981

  63. Koliji, A., Vulliet, L., Laloui, L.: Structural characterization of unsaturated aggregated soil. Can. Geotech. J. 47(3), 297–311 (2010). https://doi.org/10.1139/T09-089

  64. Koliji, A., Laloui, L., Vulliet, L.: Constitutive modeling of unsaturated aggregated soils. Int. J. Numer. Anal. Meth. Geomech. 34(17), 1846–1876 (2010). https://doi.org/10.1002/nag.888

  65. Khalili, N., Valliappan, S.: Unified theory of flow and deformation in double porous media. Eur. J. Mech. A. Solids 15(2), 321–336 (1996)

    Google Scholar 

  66. Callari, C., Federico, F.: Fem validation of a double porosity elastic model for consolidation of structurally complex clayey soils. Int. J. Numer. Anal. Meth. Geomech. 24(4), 367–402 (2000)

    Google Scholar 

  67. Pao, W.K.S., Lewis, R.W.: Three-dimensional finite element simulation of three-phase flow in a deforming fissured reservoir. Comput. Methods Appl. Mech. Eng. 191(23–24), 2631–2659 (2002). https://doi.org/10.1016/S0045-7825(01)00420-0

  68. Khalili, N., Witt, R., Laloui, L., Vulliet, L., Koliji, A.: Effective stress in double porous media with two immiscible fluids. Geophys. Res. Lett. 32(15) (2005). https://doi.org/10.1029/2005GL023766

  69. Borja, R.I., Choo, J.: Cam-clay plasticity, part VIII: a constitutive framework for porous materials with evolving internal structure. Comput. Methods Appl. Mech. Eng. 309, 653–679 (2016). https://doi.org/10.1016/j.cma.2016.06.016

  70. Gawin, D., Schrefler, B., Galindo, M.: Thermo-hydro-mechanical analysis of partially saturated porous materials. Eng. Comput. 13(7), 113–143 (1996). https://doi.org/10.1108/02644409610151584

  71. Gatmiri, B., Delage, P.: A formulation of fully coupled thermal–hydraulic–mechanical behaviour of saturated porous media: Numerical approach. Int. J. Numer. Anal. Meth. Geomech. 21(3), 199–225 (1997)

    Google Scholar 

  72. Wu, W., Li, X., Charlier, R., Collin, F.: A thermo-hydro-mechanical constitutive model and its numerical modelling for unsaturated soils. Comput. Geotech. 31(2), 155–167 (2004). https://doi.org/10.1016/j.compgeo.2004.02.004

  73. Gens, A., Nishimura, S., Jardine, R., Olivella, S.: Thm-coupled finite element analysis of frozen soil: formulation and application. Géotechnique 59(3), 159–171 (2009). https://doi.org/10.1680/geot.2009.59.3.159

  74. Zhou, M.M., Meschke, G.: A three-phase thermo-hydro-mechanical finite element model for freezing soils. Int. J. Numer. Anal. Meth. Geomech. 37(18), 3173–3193 (2013). https://doi.org/10.1002/nag.2184

  75. Sánchez, M., Gens, A., Villar, M.V., Olivella, S.: Fully coupled thermo-hydro-mechanical double-porosity formulation for unsaturated soils. Int. J. Geomech. 16(6), D4016,015 (2016). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000728

  76. Lanru, J., Xiating, F.: Numerical modeling for coupled thermo-hydro-mechanical and chemical processes (THMC) of geological media: International and Chinese experiences. Chin. J. Rock Mechan. Eng. 22, 1704–1715 (2003)

    Google Scholar 

  77. Zheng, L., Samper, J., Montenegro, L., Fernandez, A.M.: A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite. J. Hydrol. 386(1–4), 80–94 (2010). https://doi.org/10.1016/j.jhydrol.2010.03.009

  78. Rutqvist, J., Zheng, L., Chen, F., Liu, H.H., Birkholzer, J.: Modeling of coupled thermo-hydro- mechanical processes with links to geochemistry associated with bentonite-backfilled repository tunnels in clay formations. Rock Mech. Rock Eng. 47(1), 167–186 (2014). https://doi.org/10.1007/s00603-013-0375-x

  79. Zhang, R., Winterfeld, P.H., Yin, X., Xiong, Y., Wu, Y.S.: Sequentially coupled THMC model for CO2 geological sequestration into a 2-D heterogeneous saline aquifer. J. Nat. Gas Sci. Eng. 27, 579–615 (2015). https://doi.org/10.1016/j.jngse.2015.09.013

  80. Wu, D., Deng, T., Zhao, R.: A coupled THMC modeling application of cemented coal gangue-fly ash backfills. Constr. Build. Mater. 158, 326–336 (2018). https://doi.org/10.1016/j.conbuildmat.2017.10.009

  81. DeJong J.T., Soga K., Kavazanjian E., et al.: Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Géotechnique -London 63, 287 (2013)

    Google Scholar 

  82. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Eng. 45(5), 601–620 (1999)

    Google Scholar 

  83. Brinkgreve, R.B.J., Kumarswamy, S., Swolfs, W.M.: Plaxis 3D Reference Manual Anniversary Edition Version 1. Plaxis Bv, Delft (2015)

    Google Scholar 

  84. Itasca, F.: 3D Version 4.0 Users Manual. Minneap Itasca (2009)

    Google Scholar 

  85. Mazzoni, S., Mckenna, F., Scott, M.H., Fenves, G.L.: The open system for earthquake engineering simulation (OPENSEES) user command-language manual (2006)

    Google Scholar 

  86. Corporation, D.S.S.: Abaqus, ver6.14 Documentation 651 (2014)

    Google Scholar 

  87. Kolditz, O., Bauer, S., Bilke, L., Bottcher, N., Delfs, J.O., Fischer, T., Gorke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C., et al.: Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 67(2), 589–599 (2012). https://doi.org/10.1007/s12665-012-1546-x

  88. UPC CODE-BRIGHT, U.: 3-D program for thermo-hydro-mechanical analysis in geological media. USER’S GUIDE (2002)

    Google Scholar 

  89. Guimaraes, L.D.N., Gens, A., Olivella, S.: Coupled thermo-hydro-mechanical and chemical analysis of expansive clay subjected to heating and hydration. Transp. Porous Media 66(3), 341–372 (2007)

    Google Scholar 

  90. Zheng, L., Samper, J.: A coupled THMC model of FEBEX mock-up test. Phys. Chem. Earth, Parts A/B/C 33, S486–S498 (2008)

    Google Scholar 

  91. Hamamatsu, P.T.: COMSOL, inc, COMSOL multiphysics reference manual, version 5.3 (2008)

    Google Scholar 

  92. Ladd, R.S.: Specimen preparation and liquefaction of sands. J. Geotech. Geoenviron. Eng. 100:1180–1184 (1974)

    Google Scholar 

  93. Ladd, R.S.: Specimen preparation and cyclic stability of sands. J. Geotech. Geoenviron. Eng. 103:535–547 (1977)

    Google Scholar 

  94. Mulilis, J.P., Arulanandan, K., Mitchell, J.K., Chan, C.K., Seed, H.B.: Effects of sample preparation on sand liquefaction. J. Geotech. Eng. Div. 103(2), 91–108 (1977)

    Google Scholar 

  95. O’Sullivan, C.: Particle-based discrete element modeling: geomechanics perspective. Int. J. Geomech. 11(6), 449–464 (2011). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000024

  96. Gao, Z., Zhao, J., Li, X.S., Dafalias, Y.F.: A critical state sand plasticity model accounting for fabric evolution. Int. J. Numer. Anal. Meth. Geomech. 38(4), 370–390 (2014)

    Google Scholar 

  97. Tu, X., Andrade, J.E.: Criteria for static equilibrium in particulate mechanics computations. Int. J. Numer. Meth. Eng. 75(13), 1581–1606 (2008)

    Google Scholar 

  98. Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26(3), 347–374 (1977)

    Google Scholar 

  99. Radjai, F., Richefeu, V.: Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41(6), 715–728 (2009)

    Google Scholar 

  100. Lim, K-W., Krabbenhoft, K., Andrade, J.E.: On the contact treatment of non-convex particles in the granular element method. Comput. Part. Mech. 1(3), 257–275 (2014)

    Google Scholar 

  101. Lim, K-W., Krabbenhoft, K., Andrade, J.E.: A contact dynamics approach to the granular element method. Comput. Methods Appl. Mech. Eng. 268, 557–573 (2014)

    Google Scholar 

  102. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007)

    Google Scholar 

  103. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4), 601–614 (1989)

    Google Scholar 

  104. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by dem. J. Eng. Mech. 124(3), 285–292 (1998)

    Google Scholar 

  105. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61 (1998)

    Google Scholar 

  106. Estrada, N., Taboada, A., Radjai, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78(2), 021301 (2008)

    Google Scholar 

  107. Tordesillas, A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Phil. Mag. 87(32), 4987–5016 (2007)

    Google Scholar 

  108. Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57(4), 706–727 (2009)

    Google Scholar 

  109. Darve, F., Servant, G., Laouafa, F., Khoa, H.D.V.: Failure in geomaterials: continuous and discrete analyses. Comput. Methods Appl. Mech. Eng. 193(27–29), 3057–3085 (2004)

    Google Scholar 

  110. Nicot, F., Sibille, L., Donze, F., Darve, F.: From microscopic to macroscopic second-order work in granular assemblies. Mech. Mater. 39(7), 664–684 (2007)

    Google Scholar 

  111. Sitharam, T.G., Vinod, J.S., Ravishankar, B.V.: Post-liquefaction undrained monotonic behavior of sands: experiments and dem simulations. Géotechnique 59(9), 739–749 (2009)

    Google Scholar 

  112. Mesarovic, S.D., Padbidri, J.M., Muhunthan, B.: Micromechanics of dilatancy and critical state in granular matter. Géotechnique Lett. 2(2), 61–66 (2012)

    Google Scholar 

  113. Mital, U., Andrade, J.E.: Mechanics of origin of flow liquefaction instability under proportional strain triaxial compression. Acta Geotech. 11(5), 1015–1025 (2016). https://doi.org/10.1007/s11440-015-0430-8

  114. O’Donovan, J., O’Sullivan, C., Marketos, G.: Two-dimensional discrete element modelling of bender element tests on an idealised granular material. Granular Matter 14(6), 733–747 (2012). https://doi.org/10.1007/s10035-012-0373-9

  115. O’Donovan, J., O’Sullivan, C., Marketos, G., Wood, D.: Analysis of bender element test interpretation using the discrete element method. Granular Matter 17(2), 197–216 (2015). https://doi.org/10.1007/s10035-015-0552-6

  116. Hurley, R.C., Andrade, J.E.: Friction in inertial granular flows: competition between dilation and grain-scale dissipation rates. Granular Matter 17(3), 287–295 (2015)

    Google Scholar 

  117. Cho, G-C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenvironmental Eng. 132(5), 591–602 (2006)

    Google Scholar 

  118. Andrade, J.E., Lim, K.W., Avila, C.F., Vlahinic, I.: Granular element method for computational particle mechanics. Comput. Meth. Appl. Mech. Eng. 241, 262–274 (2012)

    Google Scholar 

  119. Jerves, A.X., Kawamoto, R.Y., Andrade, J.E.: Effects of grain morphology on critical state: a computational analysis. Acta Geotech. 11(3), 493–503 (2016). https://doi.org/10.1007/s11440-015-0422-8

  120. Rothenburg, L., Bathurst, R.J.: Numerical simulation of idealized granular assemblies with plane elliptical particles. Comput. Geotech. 11(4), 315–329 (1991)

    Google Scholar 

  121. Lin, X., Ng, T-T.: A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47(2), 319–329 (1997)

    Google Scholar 

  122. Yan, B., Regueiro, R., Sture, S.: Three-dimensional ellipsoidal discrete element modeling of granular materials and its coupling with finite element facets. Eng. Comput. 27(4), 519–550 (2010). https://doi.org/10.1108/02644401011044603

  123. Favier, J.F., Abbaspour-Fard, M.H., Kremmer, M.: Modeling non-spherical particles using multisphere discrete elements. J. Eng. Mech. 127(10), 971–977 (2001)

    Google Scholar 

  124. McDowell, G.R., Harireche, O.: Discrete element modelling of soil particle fracture. Géotechnique 52(2), 131–135 (2002)

    Google Scholar 

  125. Garcia, X., Latham, J-P., Xiang, J., Harrison, J.P.: A clustered overlapping sphere algorithm to represent real particles in discrete element modelling. Géotechnique 59(9), 779–784 (2009). https://doi.org/10.1680/geot.8.T.037

  126. Li, H., McDowell, G.R.: Discrete element modelling of under sleeper pads using a box test. Granular Matter 20(2), 26 (2018). https://doi.org/10.1007/s10035-018-0795-0

  127. Hart, R., Cundall, P.A., Lemos, J.: Formulation of a three-dimensional distinct element model part II: mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 25, pp. 117–125. Elsevier (1988)

    Google Scholar 

  128. Nezami, E.G., Hashash, Y.M.A., Zhao, D., Ghaboussi, J.: A fast contact detection algorithm for 3-d discrete element method. Comput. Geotech. 31(7), 575–587 (2004). https://doi.org/10.1016/j.compgeo.2004.08.002

  129. Lim, K., Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: Multiscale characterization and modeling of granular materials through a computational mechanics avatar: a case study with experiment. Acta Geotech. 11(2), 243–253 (2016). https://doi.org/10.1007/s11440-015-0405-9

  130. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: Level set discrete element method for three- dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016). https://doi.org/10.1016/j.jmps.2016.02.021

  131. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: All you need is shape: Predicting shear banding in sand with LS-DEM. J. Mech. Phys. Solids 111, 375–392 (2018). https://doi.org/10.1016/j.jmps.2017.10.003

  132. Lim, K-W., Andrade, J.E.: Granular element method for three-dimensional discrete element calculations. Int. J. Numer. Anal. Meth. Geomech. 38(2), 167–188 (2013)

    Google Scholar 

  133. Billi, A.: Grain size distribution and thickness of breccia and gouge zones from thin (<1 m) strike-slip fault cores in limestone. J. Struct. Geol. 27(10), 1823–1837 (2005)

    Google Scholar 

  134. Cheng, Y.P., Nakata, Y., Bolton, M.D.: Discrete element simulation of crushable soil. Géotechnique 53(7), 633–641 (2003)

    Google Scholar 

  135. McDowell, G.R., de Bono, J.P.: On the micro mechanics of one-dimensional normal compression. Géotechnique 63(11), 895–908 (2013)

    Google Scholar 

  136. O’Sullivan, C.: Particulate discrete element modelling: a geomechanics perspective. Taylor & Francis, London, New York (2011)

    Google Scholar 

  137. Guo, N., Zhao, J.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Google Scholar 

  138. Calvetti, F., Nova, R.: Micromechanical approach to slope stability analysis. In: Darve F, Vardoulakis I (eds), Degradations and Instabilities in Geomaterials, pp. 235–254. Springer (2004)

    Google Scholar 

  139. Zeghal, M., El Shamy, U.: A continuum-discrete hydromechanical analysis of granular deposit liquefaction. Int. J. Numer. Anal. Meth. Geomech. 28(14), 1361–1383 (2004)

    Google Scholar 

  140. El Shamy, U., Aydin, F.: Multiscale modeling of flood-induced piping in river levees. J. Geotech. Geoenviron. Eng. 134(9), 1385–1398 (2008)

    Google Scholar 

  141. Jeyisanker, K., Gunaratne, M.: Analysis of water seepage in a pavement system using the particulate approach. Comput. Geotech. 36(4), 641–654 (2009)

    Google Scholar 

  142. Cook, B.K., Noble, D.R., Williams, J.R.: A direct simulation method for particle-fluid systems. Eng. Comput. 21(2/3/4), 151–168 (2004)

    Google Scholar 

  143. Galindo-Torres, S.A.: A coupled discrete element lattice boltzmann method for the simulation of fluid—solid interaction with particles of general shapes. Comput. Methods Appl. Mech. Eng. 265, 107–119 (2013)

    Google Scholar 

  144. Feng, Y.T., Han, K., Owen, D.R.J.: Coupled lattice boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: Computational issues. Int. J. Numer. Meth. Eng. 72(9), 1111–1134 (2007)

    Google Scholar 

  145. Cleary, P.W., Prakash, M.: Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philos. Trans.-Royal Soc. Lond. Ser. A Math. Phy. Eng. Sci. 362, 2003–2030 (2004)

    Google Scholar 

  146. Komoróczi, A., Abe, S., Urai, J.L.: Meshless numerical modeling of brittle–viscous deformation: first results on boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH). Comput. Geosci. 17(2), 373–390 (2013). https://doi.org/10.1007/s10596-012-9335-x

  147. Vargas, W.L., McCarthy, J.J.: Thermal expansion effects and heat conduction in granular materials. Phys. Rev. E 76(4), 041,301 (2007). https://doi.org/10.1103/PhysRevE.76.041301

  148. Feng, Y.T., Han, K., Li, C.F., Owen, D.R.J.: Discrete thermal element modelling of heat conduction in particle systems: Basic formulations. J. Comput. Phys. 227(10), 5072–5089 (2008). https://doi.org/10.1016/j.jcp.2008.01.031

  149. Zhao, S., Evans, T.M., Zhou, X., Zhou, S.: Discrete element method investigation on thermally-induced shakedown of granular materials. Granular Matter 19(1), 11 (2017). https://doi.org/10.1007/s10035-016-0690-5

  150. Oñate, E., Rojek, J.: Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput. Methods Appl. Mech. Eng. 193(27–29), 3087–3128 (2004). https://doi.org/10.1016/j.cma.2003.12.056

  151. Anandarajah, A.: Discrete-element method for simulating behavior of cohesive soil. J. Geotech. Eng. 120(9), 1593–1613 (1994)

    Google Scholar 

  152. Yao, M., Anandarajah, A.: Three-dimensional discrete element method of analysis of clays. J. Eng. Mech. 129(6), 585–596 (2003)

    Google Scholar 

  153. Jiang, M., Liao, Z., Zhang, N., Jianfud, S.: Discrete element analysis of chemical weathering on rock. Eur. J. Environ. Civil Eng. 19(sup1), s15–s28 (2015). https://doi.org/10.1080/19648189.2015.1064617

  154. Chen, R., Ding, X., Zhang, L., Xie, Y., Lai, H.: Discrete element simulation of mine tailings stabilized with biopolymer. Environ. Earth Sci. 76(22), 772 (2017). https://doi.org/10.1007/s12665-017-7118-3

  155. Teppen, B.J., Rasmussen, K., Bertsch, P.M., Miller, D.M., Schafer, L.: Molecular dynamics modeling of clay minerals. 1. gibbsite, kaolinite, pyrophyllite, and beidellite. J. Phys. Chem. B 101(9), 1579–1587 (1997). https://doi.org/10.1021/jp961577z

  156. Ebrahimi, D., Pellenq, R.J-M., Whittle, A.J.: Nanoscale elastic properties of montmorillonite upon water adsorption. Langmuir 28(49), 16855–16863 (2012). https://doi.org/10.1021/la302997g

  157. Ebrahimi, D., Whittle, A.J., Pellenq, R.J-M.: Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets. J. Chem. Phys. 140(15), 154309 (2014). https://doi.org/10.1063/1.4870932

  158. Ebrahimi, D., Pellenq, R.J-M., Whittle, A.J.: Mesoscale simulation of clay aggregate formation and mechanical properties. Granular Matter 18, 49 (2016). https://doi.org/10.1007/s10035-016-0655-8

  159. Lenoir, N., Bornert, M., Desrues, J., Besuelle, P., Viggiani, G.: Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43(3), 193–205 (2007). https://doi.org/10.1111/j.1475-1305.2007.00348.x

  160. Josh, M., Esteban, L., Delle Piane, C., Sarout, J., Dewhurst, D., Clennell, M.: Laboratory characterization of shale properties. J. Petrol. Sci. Eng. 88, 107–124 (2012). https://doi.org/10.1016/j.petrol.2012.01.023

  161. Alikarami, R., Andò, E., Gkiousas-Kapnisis, M., Torabi, A., Viggiani, G.: Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography. Acta Geotech. 10(1), 15–30 (2015). https://doi.org/10.1007/s11440-014-0364-6

  162. Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T., Sheppard, A., Sok, R.M., Pinczewski, V., Bakke, S., Berge, L.I., et al.: Pore scale characterization of carbonates using X-ray microtomography. SPE Journal 10(04), 475–484 (2005). https://doi.org/10.2118/90368-PA

  163. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013). https://doi.org/10.1016/j.advwatres.2012.07.018

  164. Hemes, S., Desbois, G., Urai, J.L., Schroppel, B., Schwarz, J.O.: Multi-scale characterization of porosity in boom clay (hades-level, mol, Belgium) using a combination of x-ray µ-ct, 2d bib-sem and fib-sem tomography. Microporous Mesoporous Mater. 208, 1–20 (2015). https://doi.org/10.1016/j.micromeso.2015.01.022

  165. Tatone, B.S.A., Grasselli, G.: Characterization of the effect of normal load on the discontinuity morphology in direct shear specimens using X-ray micro-CT. Acta Geotech. 10(1), 31–54 (2015). https://doi.org/10.1007/s11440-014-0320-5

  166. Druckrey, A.M., Alshibli, K.A.: 3d finite element modeling of sand particle fracture based on in situ X-ray synchrotron imaging. Int. J. Numer. Anal. Meth. Geomech. 40(1), 105–116 (2016). https://doi.org/10.1002/nag.2396

  167. Zhou, B., Wang, J.: Generation of a realistic 3d sand assembly using x-ray micro-computed tomography and spherical harmonic-based principal component analysis. Int. J. Numer. Anal. Meth. Geomech. 41(1), 93–109 (2017). https://doi.org/10.1002/nag.2548

  168. Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., Rai, C.S.: Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging microstructure of gas shales. AAPG Bull. 96(4), 665–677 (2012). https://doi.org/10.1306/08151110188

  169. Bennett, K.C., Berla, L.A., Nix, W.D., Borja, R.I.: Instrumented nanoindentation and 3d mechanistic modeling of a shale at multiple scales. Acta Geotech. 10(1), 1–14 (2015). https://doi.org/10.1007/s11440-014-0363-7

  170. Semnani, S.J., Borja, R.I.: Quantifying the heterogeneity of shale through statistical combination of imaging across scales. Acta Geotech. 12(6), 1193–1205 (2017). https://doi.org/10.1007/s11440-017-0576-7

  171. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 341–346. ACM (2001)

    Google Scholar 

  172. Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34(1), 1–21 (2002). https://doi.org/10.1023/A:1014009426274

  173. Okabe, H., Blunt, M.J.: Pore space reconstruction using multiple-point statistics. J. Petrol. Sci. Eng. 46(1–2), 121–137 (2005). https://doi.org/10.1016/j.petrol.2004.08.002

  174. Hu, L.Y., Chugunova, T.: Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review. Water Resour. Res. 44(11) (2008). https://doi.org/10.1029/2008WR006993

  175. Zhang, T., Lu, D., Li, D.: Porous media reconstruction using a cross-section image and multiple- point geostatistics. In: Advanced Computer Control, 2009. ICACC’09. International Conference on, pp. 24–29. IEEE (2009)

    Google Scholar 

  176. Mariethoz, G., Renard, P., Straubhaar, J.: The direct sampling method to perform multiple-point geostatistical simulations. Water Resour. Res. 46(11) (2010). https://doi.org/10.1029/2008WR007621

  177. Zhang, T., Du, Y., Huang, T., Li, X.: Reconstruction of porous media using multiple-point statistics with data conditioning. Stoch. Env. Res. Risk Assess. 29, 727–738 (2015). https://doi.org/10.1007/s00477-014-0947-7

  178. Hassanein, R., Meyer, H.O., Carminati, A., Estermann, M., Lehmann, E., Vontobel, P.: Investigation of water imbibition in porous stone by thermal neutron radiography. J. Phys. D Appl. Phys. 39(19), 4284 (2006). https://doi.org/10.1088/0022-3727/39/19/023

  179. Kim, F.H., Penumadu, D., Gregor, J., Kardjilov, N., Manke, I.: High-resolution neutron and x-ray imaging of granular materials. J. Geotech. Geoenviron. Eng. 139(5), 715–723 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000809

  180. Perfect, E., Cheng, C-L., Kang, M., Bilheux, H., Lamanna, J., Gragg, M., Wright, D.: Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: a review. Earth-Sci. Rev. 129, 120–135 (2014)

    Google Scholar 

  181. Kim, F.H., Penumadu, D., Kardjilov, N., Manke, I.: High-resolution X-ray and neutron computed to- mography of partially saturated granular materials subjected to projectile penetration. Int. J. Impact Eng. 89, 72–82 (2016). https://doi.org/10.1016/j.ijimpeng.2015.11.008

  182. Dubois, F., Jean, M., Renouf, M., et al.: LMGC90 10e colloque national en calcul des structures. p Clé USB (2011)

    Google Scholar 

  183. Weatherley, D., Boros, V., Hancock, W.: Esys-particle tutorial and users guide version 2.1. Earth Systems Science Computational Centre, The University of Queensland (2011)

    Google Scholar 

  184. Kuhn, M.R.: Smooth convex three-dimensional particle for the discrete-element method. J. Eng. Mech. 129(5), 539–547 (2003)

    Google Scholar 

  185. Thornton, A.R., Krijgsman, D., Fransen, R.H.A., Briones, S.G., Tunuguntla, D.R., te Voortwis, A., Luding, S., Bokhove, O., Weinhart, T.: Mercury-DPM: fast particle simulations in complex geometries. EnginSoft Newslett Simul. Based Eng. Sci. 10(1), 48–53 (2013)

    Google Scholar 

  186. Kozicki, J., Donzé, F.V.: Yade-open dem: an open-source software using a discrete element method to simulate granular material. Eng. Comput. 26(7), 786–805 (2009)

    Google Scholar 

  187. Kloss, C., Goniva, C.: Liggghts–open source discrete element simulations of granular materials based on lammps. In: Supplemental Proceedings. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2, 781–788 (2011)

    Google Scholar 

  188. Itasca, C.: Pfc (particle flow code in 2 and 3 dimensions), version 5.0 [User’s manual]. Minneapolis (2014)

    Google Scholar 

  189. Ortiz, M., Leroy, Y., Needleman, A.: A finite element method for localized failure analysis. Comput. Methods Appl. Mech. Eng. 61(2), 189–214 (1987). https://doi.org/10.1016/0045-7825(87)90004-1

  190. Belytschko, T., Fish, J., Engelmann, B.E.: A finite element with embedded localization zones. Comput. Meth. Appl. Mech. Eng. 70(1), 59–89 (1988). https://doi.org/10.1016/0045-7825(88)90180-6

  191. Lin, J., Wu, W., Borja, R.I.: Micropolar hypoplasticity for persistent shear band in heterogeneous granular materials. Comput. Methods Appl. Mech. Eng. 289, 24–43 (2015). https://doi.org/10.1016/j.cma.2015.02.005

  192. Xu, M., Gracie, R., Belytschko, T.: Concurrent coupling of atomistic and continuum models. Multiscale Methods: Bridging the Scales in Science and Engineering, pp. 93–133 (2010)

    Google Scholar 

  193. Regueiro, R.A., Yan, B.: Concurrent multiscale computational modeling for dense dry granular materials interfacing deformable solid bodies. In: Wan R, Alsaleh, M., Labuz, J. (eds.), Bifurcations, Instabilities and Degradations in Geomaterials, pp. 251–273. Springer (2011)

    Google Scholar 

  194. Li, M., Yu, H., Wang, J., Xia, X., Chen, J.: A multiscale coupling approach between discrete element method and finite difference method for dynamic analysis. Int. J. Numer. Meth. Eng. 102(1), 1–21 (2015). https://doi.org/10.1002/nme.4771

  195. Nguyen, T.K., Combe, G., Caillerie, D., Desrues, J.: FEM × DEM modelling of cohesive granular materials: numerical homogenization and multi-scale simulations. Acta Geophys. 62(5), 1109–1126 (2014). https://doi.org/10.2478/s11600-014-0228-3

  196. Guo, N., Zhao, J.: A coupled fem/dem approach for hierarchical multiscale modelling of granular media. Int. J. Numer. Meth. Eng. 99(11), 789–818 (2014). https://doi.org/10.1002/nme.4702

  197. Guo, N., Zhao, J.: 3D multiscale modeling of strain localization in granular media. Comput. Geotech. 80, 360–372 (2016). https://doi.org/10.1016/j.compgeo.2016.01.020

  198. Guo, N., Zhao, J.: Multiscale insights into classical geomechanics problems. Int. J. Numer. Anal. Meth. Geomech. 40(3), 367–390 (2016). https://doi.org/10.1002/nag.2406

  199. Liu, Y., Sun, W., Yuan, Z., Fish, J.: A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials. Int. J. Numer. Meth. Eng. 106(2), 129–160 (2016). https://doi.org/10.1002/nme.5139

  200. Cheng, H., Yamamoto, H., Guo, N., Huang, H.: A simple multiscale model for granular soils with geosynthetic inclusion. In: Li, X., Feng, Y., Mustoe, G. (eds.), International Conference on Discrete Element Methods, pp. 445–453. Springer (2017)

    Google Scholar 

  201. Zhao, J.: Hierarchical multiscale modeling of strain localization in granular materials: A condensed overview and perspectives. In: Papamichos, E., Papanastasiou, P., Pas-ternak, E., Dyskin, A. (eds.), International Workshop on Bifurcation and Degradation in Geomaterials, pp. 349–359. Springer (2017)

    Google Scholar 

  202. Wu, H., Guo, N., Zhao, J.: Multiscale modeling and analysis of compaction bands in high-porosity sandstones. Acta Geotech. 13(3), 575–599 (2017). https://doi.org/10.1007/s11440-017-0560-2

  203. Argilaga, A., Desrues, J., Pont, S.D., Combe, G., Caillerie, D.: FEM × DEM multiscale modeling: model performance enhancement from newton strategy to element loop parallelization. Int. J. Numer. Meth. Eng. 114(1), 47–65 (2018)

    Google Scholar 

  204. Liu, C., Sun, Q., Yang, Y.: Multi-scale modelling of granular pile collapse by using material point method and discrete element method. Procedia Eng. 175, 29–35 (2017). https://doi.org/10.1016/j.proeng.2017.01.009

  205. Andrade, J.E., Tu, X.: Multiscale framework for behavior prediction in granular media. Mech. Mater. 41(6), 652–669 (2009). https://doi.org/10.1016/j.mechmat.2008.12.005

  206. Tu, X., Andrade, J.E., Chen, Q.: Return mapping for non-smooth and multiscale elastoplasticity. Comput. Methods Appl. Mech. Eng. 198(30–32), 2286–2296 (2009). https://doi.org/10.1016/j.cma.2009.02.014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrade, J.E., Mital, U. (2019). Multiscale and Multiphysics Modeling of Soils. In: Lu, N., Mitchell, J. (eds) Geotechnical Fundamentals for Addressing New World Challenges. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-06249-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06249-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06248-4

  • Online ISBN: 978-3-030-06249-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics