Skip to main content

Soil Properties: Physics Inspired, Data Driven

  • Chapter
  • First Online:
Geotechnical Fundamentals for Addressing New World Challenges

Abstract

Research and engineering projects during the last century have advanced the understanding of soil behavior and contributed extensive datasets. Nevertheless, the granular nature of soils challenges the accurate prediction of soil properties. In this context, a physics-inspired and data-driven approach helps us anticipate the soil response. The granular nature of soils defines their inherent properties (e.g., non-linear, non-elastic, porous, pervious) and their effective stress-dependent stiffness, frictional strength and dilation upon shear. The revised soil classification builds on the physical understanding of soils (e.g., packing characteristics and the effect of pore fluid chemistry on fines) and the extensive data accumulated in the field. Asymptotically correct compression models adequately fit experimental data and avoid numerical difficulties. Constant volume friction reflects particle shape and it is strongly dependent on stress path. Repetitive loading leads to characteristic asymptotic conditions (terminal density, and either ratcheting or shakedown). Data and physical analyses suggest a power relationship between void ratio and hydraulic conductivity. The pore-scale origin of suction is interfacial tension and contact angle. P-wave velocity is a good indicator of loss of saturation and S-wave velocity measures the skeletal shear stiffness. Permittivity, electrical conductivity and thermal conductivity are sensitive to water content. Finally, ubiquitous sensors, information technology and cellular communication support the development of effective laboratory characterization techniques and allow us to access large databases. These are transformative changes in geotechnical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso-Marroquin, F., Herrmann, H.J.F.: Ratcheting of granular materials. Phys. Rev. Lett. 92, 054301 (2004)

    Google Scholar 

  2. Been, K., Jefferies, M.G.: A state parameter for sands. Géotechnique 35, 99–112 (1985)

    Google Scholar 

  3. Bishop, A.W., Blight, G.E.: Some aspects of effective stress in saturated and partly saturated soils. Geotechnique 13, 177–197 (1963)

    Google Scholar 

  4. Bloemen, G.W.: Calculation of capillary conductivity and capillary rise from grain size distribution. Instituut voor Cultuurtechniek en Waterhuishouding (1977)

    Google Scholar 

  5. Bolton, M.D.: The strength and dilatancy of sands. Geotechnique 36, 65–78 (1986)

    Google Scholar 

  6. Brooks, R., Corey, T.: HYDRAU uc properties of porous media. Hydrology Papers, Colorado State University (1964)

    Google Scholar 

  7. Burland, J.B.: On the compressibility and shear strength of natural clays. Géotechnique 40, 329–378 (1990)

    Google Scholar 

  8. Carman, P.C.: Fluid flow through granular beds. Trans. Am. Inst. Chem. Eng. 15, 150–167 (1937)

    Google Scholar 

  9. Cha, M., Santamarina, J.C., Kim, H.S., Cho, G.C.: Small-strain stiffness, shear-wave velocity, and soil compressibility. J. Geotech. Geoenviron. Eng. 140, 06014011 (2014)

    Google Scholar 

  10. Chapuis, R.P.: Predicting the saturated hydraulic conductivity of soils: a review. Bull. Eng. Geol. Env. 71, 401–434 (2012)

    Google Scholar 

  11. Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132, 591–602 (2006)

    Google Scholar 

  12. Cho, G.C., Santamarina, J.C.: Unsaturated particulate materials—particle-level studies. J. Geotech. Geoenviron. Eng. 127, 84–96 (2001)

    Google Scholar 

  13. Chong, S.H., Santamarina, J.C.: Sands subjected to repetitive vertical loading under zero lateral strain: accumulation models, terminal densities, and settlement. Can. Geotech. J. 53, 2039–2046 (2016)

    Google Scholar 

  14. Chong, S.H., Santamarina, J.C.: Soil compressibility models for a wide stress range. J. Geotech. Geoenviron. Eng. 142, 06016003 (2016)

    Google Scholar 

  15. Cortes, D.D., Martin, A.I., Yun, T.S., Francisca, F.M., Santamarina, J.C., Ruppel, C.: Thermal conductivity of hydrate-bearing sediments. J. Geophys. Res. Solid Earth 114 (2009)

    Google Scholar 

  16. Dunn, R.J., Mitchell, J.K.: Fluid conductivity testing of fine-grained soils. J. Geotech. Eg. 110, 1648–1665 (1984)

    Google Scholar 

  17. Ewen, J., Thomas, H.R.: The thermal probe—a new method and its use on an unsaturated sand. Geotechnique 37, 91–105 (1987)

    Google Scholar 

  18. Farouki, O.T.: Thermal properties of soils (No. CRREL-MONO-81-1). Cold Regions Research and Engineering Lab Hanover NH (1981)

    Google Scholar 

  19. Fredlund, D.G.: The 1999 RM Hardy Lecture: the implementation of unsaturated soil mechanics into geotechnical engineering. Can. Geotech. J. 37, 963–986 (2000)

    Google Scholar 

  20. Hong, Z.S., Zeng, L.L., Cui, Y.J., Cai, Y.Q., Lin, C.: Compression behavior of natural and reconstituted clays. Géotechnique 62, 291–301 (2012)

    Google Scholar 

  21. BSI (British Standards Institution): Code of Practice for Site Investigations. BS 5930, London (1999)

    Google Scholar 

  22. Jang, J., Narsilio, G.A., Santamarina, J.C.: Hydraulic conductivity in spatially varying media a pore-scale investigation. Geophys. J. Int. 184, 1167–1179 (2011)

    Google Scholar 

  23. Jang, J., Santamarina, J.C.: Fines classification based on sensitivity to pore-fluid chemistry. J. Geotechn. Geoenviron. Eng. 142, 06015018 (2016)

    Google Scholar 

  24. Jang, J., Santamarina, J.C.: Closure to “Fines classification based on sensitivity to pore-fluid chemistry” by Junbong Jang and J. Carlos Santamarina. J. Geotech. and Geoenviron. Eng. 143, 07017013 (2017)

    Google Scholar 

  25. Johansen, T.A.: Thermal conductivity of soils. US Army Corps of Engineers, Trondheim, Hanover, New Hampshire (1975)

    Google Scholar 

  26. Keyes, F.G., Vines, R.G.: The thermal conductivity of steam. Int. J. Heat Mass Transf. 7, 33–40 (1964)

    Google Scholar 

  27. Klein, K.A., Santamarina, J.C.: Electrical conductivity in soils: underlying phenomena. J. Environ. Eng. Geophys. 8, 263–273 (2003)

    Google Scholar 

  28. Ladd, C.C.: Stress-deformation and strength characteristics, state of the art report. In: Proceedings of 9th International Conference on Soil Mechanics, Foundation Engineering, vol. 4, pp. 421–494 (1977)

    Google Scholar 

  29. Lade, P.V.: Assessment of test data for selection of 3-D failure criterion for sand. Int. J. Numer. Anal. Meth. Geomech. 30, 307–333 (2006)

    Google Scholar 

  30. Libardi, P., Reichardt, K., Nielsen, D., Biggar, J.: Simple field methods for estimating soil hydraulic conductivity. Soil Sci. Soc. Am. J. 44, 3–7 (1980)

    Google Scholar 

  31. Lu, N., Likos, W.J.: Unsaturated Soil Mechanics. Wiley (2004)

    Google Scholar 

  32. Mayne, P.W., Holtz, R.D.: Effect of principal stress rotation on clay strength. In: Proceedings of 11th ICSMFE, vol. 2, pp. 579–582, San Francisco (1985)

    Google Scholar 

  33. Mikić, B.B.: Thermal contact conductance; theoretical considerations. Int. J. Heat Mass Transf. 17, 205–214 (1974)

    Google Scholar 

  34. Narsilio, N.A., Santamarina, J.C.: Terminal densities. Géotechnique 58, 669–674 (2008)

    Google Scholar 

  35. Park, J., Santamarina, J.C.: Sand response to large numbers of cycles under zero-lateral strain condition: evolution of void ratio and small strain stiffness. Géotechnique (2018). https://doi.org/10.1680/jgeot.17.p.124

  36. Park, J., Castro, G.M., Santamarina, J.C.: Closure to “Revised soil classification system for coarse-fine mixtures”. J. Geotech. Geoenviron. Eng. 144, 07018019 (2018)

    Google Scholar 

  37. Park, J., Santamarina, J.C.: Revised soil classification system for coarse-fine mixtures. J. Geotech. Geoenviron. Eng. 143, 04017039 (2017)

    Google Scholar 

  38. Park, J., Santamarina, J.C.: Revised soil classification system RSCS. In: Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, pp. 1081–1084 (2017b)

    Google Scholar 

  39. Pasten, C., Shin, H., Santamarina, J.C.: Long-term foundation response to repetitive loading. J. Geotech. Geoenviron. Eng. 140, 04013036 (2014)

    Google Scholar 

  40. Pestana, J.M., Whittle, A.J.: Compression model for cohesionless soils. Géotechnique 45, 611–631 (1995)

    Google Scholar 

  41. Rawls, W.J., Gish, T.J., Brakensiek, D.L.: Estimating soil water retention from soil physical properties and characteristics. Adv. Soil Sci. 16, 213–234 (1991)

    Google Scholar 

  42. Ren, X.W., Santamarina, J.C.: The hydraulic conductivity of sediments: a pore size perspective. Eng. Geol. 233, 48–54 (2018)

    Google Scholar 

  43. Revil, A., Coperey, A., Shao, Z., Florsch, N., Fabricius, I.L., Deng, Y., Delsman, J., Pauw, P., Karaoulis, M., de Louw, P.G.B., van Baaren, E.S.: Complex conductivity of soils. Water Resour. Res. 53, 1–27 (2017)

    Google Scholar 

  44. Robertson, E.C.: Thermal properties of rocks (No. 88-441). US Geological Survey (1988)

    Google Scholar 

  45. Santamarina, J.C.: [What] to teach or not to teach—that is the question. Geotech. Res. 2(4), 135–138 (2016)

    Google Scholar 

  46. Santamarina, J.C., Klein, K., Fam, M.: Soils and waves: particulate materials behavior, characterization and process monitoring. Wiley, Chichester, U.K. (2001)

    Google Scholar 

  47. Santamarina, J.C., Park, J.: Geophysical properties of soils. Aust. Geomech. J. 51, 183–194 (2016)

    Google Scholar 

  48. Santamarina, J.C., Shin, H.: Friction in Granular Media. Meso-scale Shear Physics in Earthquake and Landslide Mechanics, pp. 157–188. CRC Press, London (2009)

    Google Scholar 

  49. Shevnin, V., Mousatov, A., Ryjov, A., Delgado-Rodriquez, O.: Estimation of clay content in soil based on resistivity modelling and laboratory measurements. Geophys. Prospect. 55, 265–275 (2007)

    Google Scholar 

  50. Skinner, B.J.: Section 6: thermal expansion. Geol. Soc. Am. 97, 75–96 (1966)

    Google Scholar 

  51. Sverdrup, H.U., Johnson, M.W., Fleming, R.H.: The Oceans: their physics, chemistry, and general biology. Prentice-Hall, New York (1942)

    Google Scholar 

  52. Terzaghi, K.: Old earth-pressure theories and new test results. Eng. News-Record 85, 632–637 (1920)

    Google Scholar 

  53. Terzaghi, K., Peck, R.B.: Soil Mechanics in Engineering Practice. Wiley (1948)

    Google Scholar 

  54. Vaid, Y.P., Sivathayalan, S.: Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests. Can. Geotech. J. 33, 281–289 (1996)

    Google Scholar 

  55. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Google Scholar 

  56. Yagi, S., Kunii, D.: Studies on effective thermal conductivities in packed beds. An Official Publication of the Am. Inst. Chem. Eng. J. 3, 373–381 (1957)

    Google Scholar 

  57. Yun, T.S., Santamarina, J.C.: Fundamental study of thermal conduction in dry soils. Granular Matter 10, 197–207 (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

Support for the preparation of this manuscript was provided by the KAUST Endowment at King Abdullah University of Science and Technology. G. E. Abelskamp edited the manuscript. S. Burns and J. DeJong reviewed the manuscript and provided insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carlos Santamarina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santamarina, J.C. et al. (2019). Soil Properties: Physics Inspired, Data Driven. In: Lu, N., Mitchell, J. (eds) Geotechnical Fundamentals for Addressing New World Challenges. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-06249-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06249-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06248-4

  • Online ISBN: 978-3-030-06249-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics