Skip to main content

Advances in Geotechnical Sensors and Monitoring

  • Chapter
  • First Online:
Geotechnical Fundamentals for Addressing New World Challenges

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Abstract

The recent advances in sensor and communication technologies are making significant impacts on the monitoring methods used for geotechnical engineering. This chapter introduces several emerging technologies that have shown to provide new types of dataset that were not available a decade ago. Technologies such as computed tomography scanning, environmental scanning electron microscope, microfluidics, particle image velocimetry and transparent soils are now used to observe the behavior of geomaterials under various changes in the surrounding environment at the laboratory scale. Computer vision technologies, distributed fiber optic sensing, LiDAR, wireless sensor network and satellite images produce data of high resolution and large spatial coverage at relatively low cost at the field scale. They can be used for life-time performance monitoring of geotechnical structures. The new dataset obtained from these new emerging technologies can be the catalysts to transform the geotechnical engineering methods used for risk assessment, design, construction and maintenance to a higher level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acikgoz, S., Pelecanos, L., Giardina, G., Aitken, J., Soga, K.: Distributed sensing of a masonry vault during nearby piling. Struct. Control Health Monit. 24(3), e1872 (2017)

    Google Scholar 

  2. Acikgoz, S., Soga, K., Woodhams, J.: Evaluation of the response of a vaulted masonry structure to differential settlements using point cloud data and limit analyses. Constr. Build. Mater. 150, 916–931 (2017)

    Google Scholar 

  3. Adrian, R.J.: Particle-image techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261–304 (1991)

    Google Scholar 

  4. Akyildiz, I.F., Sun, Z., Vuran, M.C.: Signal propagation techniques for wireless underground communication networks.”. Phys. Commun. 2(3), 167–183 (2009)

    Google Scholar 

  5. Alhaddad, M.: Pers. Commun. (2018)

    Google Scholar 

  6. Alhaddad, M., Wilcock, M., Gue, C.Y., Elshafie, M.Z.B.E, Soga, K., Mair, R.J., Devriendt, M., Wright, P.: Imposed longitudinal settlement on a cast-iron tunnel from the excavation of a new tunnel beneath. In: Proceedings of the 9th International Symposium on Geotechnical Aspects of Underground Construction in Soft Grounds (IS-São Paulo 2017), p. 343 (2017)

    Google Scholar 

  7. Andò, E., S.A. Hall, G. Viggiani, J. Desrues., P. Bésuelle.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotechnica 7(1), 1–13 (2012)

    Google Scholar 

  8. Aryal, A., Brooks, B.A., Reid, M.E., Bawden, G.W., Pawlak. G.R.: Displacement fields from point cloud data: application of particle imaging velocimetry to landslide geodesy. J. Geophy. Res. Earth Surf. 117(1), 1–15 (2012)

    Google Scholar 

  9. Aryal, A., Brooks, B.A., Reid, M.E.: Landslide subsurface slip geometry inferred from 3-D surface displacement fields. Geophys. Res. Lett. 42, 1411–1417 (2015)

    Google Scholar 

  10. ASCE Task Committee on Instrumentation and Monitoring Dam Performance.: Guidelines for instrumentation and measurements for monitoring dam performance. Am. Soc. Civil Eng. 715 pp (2000)

    Google Scholar 

  11. Bassett, R.: A guide to field instrumentation in geotechnics: principles, installation and reading. CRC Press, 232 pp (2012)

    Google Scholar 

  12. Bathurst, R.J., Ezzein, F.M.: Geogrid and soil displacement observations during pullout using a transparent granular soil. Geotech. Test. J. 38(5), 673–685 (2015)

    Google Scholar 

  13. Bourne-Webb, P.J., Amatya, B., Soga, K., Amis, T., Davidson, C., Payne, P.: Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3), 237–248 (2009)

    Google Scholar 

  14. Bruchon, J.-F., Pereira, J.M., Vandamme, M., Delage, P., Bornert, M., Lenoir, N.: X-ray microtomography characterisation of the changes in statistical homogeneity of an unsaturated sand during imbibition. Géotechnique Lett. 3, 84–88 (2013)

    Google Scholar 

  15. Chaiyasarn, K.: Pers. Commun. (2011)

    Google Scholar 

  16. Cheung, L.L.K., Soga, K., Bennett, P.J., Kobayashi, Y., Amatya, B., Wright, P.: Optical fibre strain measurement for tunnel lining monitoring. Proc. Inst. Civil Eng. Geotech. Eng. 163(3), 119–130 (2010)

    Google Scholar 

  17. Chini, C.M., Wallace, J.F., Rutherford, C.J., Peschel, J.M.: Shearing failure visualization via particle tracking in soft clay using a transparent soil. Geotech. Test. J. 38(5), 708–724 (2015)

    Google Scholar 

  18. De Cataldo, D., Chen, K., Airey, D.: Three-dimensional deformations in transparent soil using fluorescent markers. Int. J. Phys. Model. Geotech. 17(2), 1–13 (2017)

    Google Scholar 

  19. Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3), 529–546 (1996)

    Google Scholar 

  20. Desrues, J., Andò. E.: Strain localisation in granular media. Comptes Rendus Physique 16(1), 26–36 (2015)

    Google Scholar 

  21. Dunnicliff, J.: Geotechnical instrumentation for monitoring field performance. Wiley-Interscience, 577 pp (1988)

    Google Scholar 

  22. Druckrey, A.M., Alshibli, K.A., Al-Raoush, R.I.: Discrete particle translation gradient concept to expose strain localisation in sheared granular materials using 3D experimental kinematic measurements. Géotechnique 68(2), 162–170 (2018)

    Google Scholar 

  23. El Ganainy, H., Tessari, A., Abdoun, T., Sasanakul, I.: Tactile pressure sensors in centrifuge testing. Geotech. Test. J. 37(1), 151–163 (2014)

    Google Scholar 

  24. Ezzein, F.M., Bathurst. R.J.: A transparent sand for geotechnical laboratory modeling. Geotech. Test. J. 34(6), 590–601 (2011)

    Google Scholar 

  25. Ferreira, J.A.Z., Zornberg, J.G.: A transparent pullout testing device for 3D evaluation of soil–geogrid interaction. Geotech. Test. J. 38(5), 686–707 (2015)

    Google Scholar 

  26. Fonseca, J., O’Sullivan, C., Coop, M.R., Lee, P.D.: Quantifying the evolution of soil fabric during shearing using scalar parameters. Géotechnique 63(10), 818–829 (2013)

    Google Scholar 

  27. Gao, B., Sui. W.: Experimental modeling of quicksand with transparent soil through an orifice. Geotech. Test. J. 40(5), 798–809 (2017)

    Google Scholar 

  28. Gao, Y., Sui, W., Liu, J.: Visualization of chemical grout permeation in transparent soil. Geotech. Test. J. 38(5), 774–786 (2015)

    Google Scholar 

  29. Glisic, B., Inaudi, D.: Fibre optic methods for structural health monitoring. Wiley-Interscience, 276 pp (2007)

    Google Scholar 

  30. Gue, C.Y., Wilcock, M., Alhaddad, M.M., Elshafie, M.Z.B.E., Soga, K., Mair, R.J.: The monitoring of an existing cast iron tunnel with distributed fibre optic sensing (DFOS). J. Civil Struct. Health Monit. 5(5), 573–586 (2015)

    Google Scholar 

  31. Gue, C.Y., Wilcock, M.J., Alhaddad, M.M., Elshafie, M., Soga, K., Mair, R.J.: Tunnelling close beneath an existing tunnel in clay–perpendicular undercrossing. Géotechnique 67(9), 795–807 (2017)

    Google Scholar 

  32. Hanna, T.H.: Field instrumentation in geotechnical engineering. Trans Tech Publication, 843 pp (1985)

    Google Scholar 

  33. Hasan, A., Alshibli, K.: Three dimensional fabric evolution of sheared sand. Granular Matter 14(4), 469–482 (2012)

    Google Scholar 

  34. Higo, Y., Oka, F., Kimoto, S., Sanagawa, T., Matsushima, Y.: Study of strain localization and microstructural changes in partially saturated sand during triaxial tests using microfocus X-ray CT. Soils Found. 51(1), 95–111 (2011)

    Google Scholar 

  35. Higo, Y., Oka, F., Sato, T., Matsushima, Y., Kimoto, S.: Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus X-ray CT with digital image correlation. Soils Found. 53(2), 181–198 (2013)

    Google Scholar 

  36. Iskander, M.: Modeling with transparent soils—visualizing soil structure interaction and multi phase flow, non-intrusively. Springer, 331 pp (2010)

    Google Scholar 

  37. Iskander, M., Bless, S., Omidvar, M.: Rapid penetration into granular Media. Visualizing the Fundamental Physics of Rapid Earth Penetration, Elsevier, 458 pp (2015)

    Google Scholar 

  38. Iskander, M., Liu, J.: Spatial deformation measurement using transparent soil. Geotech. Test. J. 33(4), 314–321 (2010)

    Google Scholar 

  39. Iskander, M., Bathurst, R. J., Omidvar. M.: Past, present, and future of transparent soils. Geotech. Test. J. 38(5), 557–573 (2015)

    Google Scholar 

  40. Janmonta, K. Uchimura, T. Amatya, B.L., Soga, K. Bennett, P.J., Lung, R., Robertson, I.: Fibre optics monitoring of clay cuttings and embankments along London’s ring motorway, GeoCongress 2008, Characterization, Monitoring and Modeling of Geotechnical, ASCE Geotechnical Special Publication No. 179, pp. 509–516 (2008)

    Google Scholar 

  41. Karatza, Z., Andò, E., Papanicolopulos, S.A., Ooi, J.Y., Viggiani. G.: Evolution of deformation and breakage in sand studied using X-ray tomography. Géotechnique, 68(2), 107–117 (2018)

    Google Scholar 

  42. Kechavarzi, C., Soga, K., de Battista, N, Pelecanos, L., Elshafie, M., Mair, R.J.: Distributed Optical Fibre Sensing for Monitoring Geotechnical Infrastructure—A Practical Guide. ICE Publishing, 192 pp (2016)

    Google Scholar 

  43. Klar, A., Bennett, P.J., Soga, K., Mair, R.J., Tester, P., Fernie, R., St John, H., Torp-Peterson, G.: The importance of distributed strain measurement for pile foundations. Proc. ICE—Geotech. Eng. 159(GE3), 135–144 (2006)

    Google Scholar 

  44. Klar, A., Linker, R.: Feasibility study of automated detection of tunnel excavation by Brillouin optical time domain reflectometry. Tunn. Undergr. Space Technol. 25(5), 575–586 (2010)

    Google Scholar 

  45. Kobayashi, T.: Pers. Commun. (2018)

    Google Scholar 

  46. Kong, G.Q., Cao, Z.H., Zhou, H., Sun, X.J.: Analysis of piles under oblique pullout load using transparent-soil models. Geotech. Test. J. 38(5), 725–738 (2015)

    Google Scholar 

  47. Kong, G. Q., Li, H., Hu, Y.X., Yu, Y.X., Xu. W.B.: New suitable pore fluid to manufacture transparent soil. Geotech. Test. J. 40(4), 658–672 (2017)

    Google Scholar 

  48. Lague, D., Brodu, N., Leroux, J.: Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J. Photogrammetry Remote Sens. 82, 10–26 (2013)

    Google Scholar 

  49. Li, L., Zhang, Z., Chen, G., Lytton, R.: Measuring unsaturated soil deformations during triaxial testing using a photogrammetry-based method. Can. Geotech. J. 53(3), 472–489 (2016)

    Google Scholar 

  50. Lim, K., Wong, L., Chiu, W.K., Kodikara, J.: Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes. Struct. Control Health Monit. 23(2), 303–314 (2016)

    Google Scholar 

  51. Lin, T., Wu, Y., Soga, K., Wham, B.P. Pariya-Ekkasut, C., Berger, B., O’Rourke, T.D.: Buried wireless sensor networks for monitoring pipeline joint leakage caused by large ground movements. J. Pipeline Syst. Eng. Pract. (2018). (Under review)

    Google Scholar 

  52. Liu, J., Iskander, M.G.: Modelling capacity of transparent soil. Can. Geotech. J. 47(4), 451–460 (2010)

    Google Scholar 

  53. Long, Z., Nugent, E., Javer, A., Cicuta, P., Sclavi, B., Cosentino Lagomarsino, M., Dorfman, K.D.: Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab Chip 13(5), 947–954 (2013)

    Google Scholar 

  54. Lowe, D. G.: Object recognition from local scale-invariant features. In: Proceeding of the 7th IEEE International Conference on Computer Vision, New York, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  55. Lourenco, S., Gallipoli, D., Augarde, C., Toll, D.G., Charles Fisher, P., Congreve, A.: Formation and evolution of water menisci at contacts in unsaturated granular media. Géotechnique 62(3), 193–199 (2012)

    Google Scholar 

  56. Lourenço, S., Gallipoli, D., Toll, D.G., Augarde, C.E., Evans, F.D., Medero, G.M.: Calibrations of a high-suction tensiometer. Géotechnique 58(8), 659–668 (2008)

    Google Scholar 

  57. Massonnet, D., Souyris, J.C.: SAR interferometry: towards the ultimate ranging accuracy. In: Imaging with Synthetic Aperture Radar; CRC Press, pp. 177–228 (2008)

    Google Scholar 

  58. Matsumura, S., Kobayashi, T., Mizutani, T., Bathurst, R.: Manufacture of bonded granular soil using X-ray CT Scanning and 3D printing. Geotech. Test. J. 40(6), 1000–1010 (2017)

    Google Scholar 

  59. Manca, D., Ferrari, A., Laloui, L.: Fabric evolution and the related swelling behaviour of a sand/bentonite mixture upon hydro-chemo-mechanical loadings. Géotechnique 66(1), 41–57 (2016)

    Google Scholar 

  60. McCormick, N.J., Lord, J.D.: Practical in situ applications of DIC for large structures. Appl. Mech. Mater. 24–25, 161–166 (2010)

    Google Scholar 

  61. Milillo, P., Giardina, G., DeJong, M.J., Perissin, D., Milillo, G.: Multi-temporal InSAR structural damage assessment: the London Crossrail case study. Remote Sensing 10(2), 287 (2018)

    Google Scholar 

  62. Minardo, A., Bernini, R., Zeni, L.: Vectorial dislocation monitoring of pipelines by use of Brillouin-based fiber-optics sensors. Smart Mater. Struct. 17(1), 015006 (2008)

    Google Scholar 

  63. Mohamad, H., Bennett, P.J., Soga, K., Mair, R.J., Bowers, K.: Behaviour of an old masonry tunnel due to tunnelling induced ground settlement. Géotechnique 60(12), 927–938 (2010)

    Google Scholar 

  64. Mohamad, H., Soga, K., Pellow, A.: Performance Monitoring of a secant piled wall using distributed fibre optic strain sensing. J. Geotech. Geoenviron. Eng. 137(12), 1236–1243 (2011)

    Google Scholar 

  65. Mohamad, H., Soga, K., Bennett, P.J., Mair, R.J., Lim, C.S.: Monitoring twin tunnel interaction using distributed optical fiber strain measurements. J. Geotech. Geoenviron. Eng. 138(8), 957–967 (2011)

    Google Scholar 

  66. Muszynski, M.R., Olson, S.M., Hashash, Y.M.A., Phillips, C.: Earth pressure measurements using tactile pressure sensors in a saturated sand during static and dynamic centrifuge testing. Geotech. Test. J. 39(3), 371–390 (2016)

    Google Scholar 

  67. Ni, Q., Hird, C.C., Guymer, I.: Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry. Géotechnique 60(2), 121–132 (2010)

    Google Scholar 

  68. Ni, P., Moore, I.D., Take, W.A.: Distributed fibre optic sensing of strains on buried full-scale PVC pipelines crossing a normal fault. Géotechnique 68(1), 1–17 (2018)

    Google Scholar 

  69. Omidvar, M., Doreau Malioche, J., Chen, Z., Iskander, M., Bless, S.: Visualizing kinematics of dynamic penetration in granular media using transparent soils. Geotech. Test. J. 38(5), 656–672 (2015)

    Google Scholar 

  70. Ouchi, K.: Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens. 5(2), 716–807 (2013)

    Google Scholar 

  71. Palmer, M.C., O’Rourke, T.D., Olson, N.A., Abdoun, T., Ha, D., O’Rourke, M.J.: Tactile pressure sensors for soil-structure interaction assessment. J. Geotech. Geoenviron. Eng. 135(11), 1638–1645 (2009)

    Google Scholar 

  72. Paikowsky, S., Hajduk, E.: Calibration and use of grid-based tactile pressure sensors in granular material. Geotech. Test. J. 20(2), 218–241 (1997)

    Google Scholar 

  73. Pamukcu, S., Cheng, L.: Underground Sensing. Academic Press, 522 pp (2018)

    Google Scholar 

  74. Peters, S.B., Siemens, G., Take. W.A.: Characterization of transparent soil for unsaturated applications. Geotech. Test. J. 34(5), 445–456 (2011)

    Google Scholar 

  75. Pelecanos, L., Soga, K., Chunge, M.P.M., Ouyang, Y., Kwan, V., Kechavarzi, C., Nicholson, D.: Distributed fibre-optic monitoring of an Osterberg-cell pile test in London. Geotechnique Lett. 7(2), 152–160 (2017)

    Google Scholar 

  76. Pelecanos, L., Soga, K., Elshafie, M., Nicholas, d. B., Kechavarzi, C., Gue, C. Y., Ouyang, Y., Seo, H.: Distributed fibre optic sensing of axially loaded bored piles. J. Geotech. Geoenviron. Eng. 144(3), 04017122 (2018)

    Google Scholar 

  77. Pinyol, N.M., Alvarado, M.: Novel analysis for large strains based on particle image velocimetry. Can. Geotech. J. 54(7), 933–944 (2017)

    Google Scholar 

  78. Pyles, M.R., Rogers, J.D., Bray, J.D., Skaugset, A., Storesund, R., Schlieder, G.: Expert opinion report, Superior Court of Washington for King County. Case No. 14-2-18401-8 SEA, June 30 (2016)

    Google Scholar 

  79. Rahardjo, H., Leong, E. C.: Suction measurements. In: Unsaturated Soils 2006, pp. 81–104. American Society of Civil Engineers (2006)

    Google Scholar 

  80. Rathje, E.M., Franke, K.: Remote sensing for geotechnical earthquake reconnaissance. Soil Dyn. Earthquake Eng. 91, 304–316 (2016)

    Google Scholar 

  81. Rathje, E.M., Secara, S.S., Martin, J.G., van Ballegooy, S., Russell, J.: Liquefaction-induced horizontal displacements from the Canterbury earthquake sequence in New Zealand measured from remote sensing techniques. Earthquake Spectra 33(4), 1475–1494 (2017)

    Google Scholar 

  82. Rodenas-Herráiz, D., Soga, K., Fidler, P., de Battista, N.: Wireless Sensor Networks for Civil Infrastructure Monitoring—A Best Practice Guide. ICE Publishing, 208 pp (2016)

    Google Scholar 

  83. Romero, E., Simms, P.H.: Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotech. Geol. Eng. 26(6), 705–727 (2008)

    Google Scholar 

  84. Romero, E., Della Vecchia, G., Jommi, C.: An insight into the water retention properties of compacted clayey soils. Géotechnique 61(4), 313–328 (2011)

    Google Scholar 

  85. Rui, Y., Kechavarzi, C., O’Leary, F., Barker, C., Nicholson, D., Soga, K.: Integrity testing of pile cover using distributed fibre optic sensing. Sensors 17, 2949 (2017)

    Google Scholar 

  86. Salazar, S.E., Barnes, A., Coffman, R.A.: Development of an internal camera-based volume determination system for triaxial testing. Geotech. Test. J. 38(4), 549–555 (2015)

    Google Scholar 

  87. Sato, A., Ikeda, K.: Visualization of diffusion phenomena in porous media by means of X-ray computed tomography (CT) scanning. Can. Geotech. J. 52(10), 1448–1456 (2015)

    Google Scholar 

  88. Schwamb, T., Soga, K., Mair, R.J., Elshafie, M.Z., Sutherden, R., Boquet, C., Greenwood, J.: Fibre optic monitoring of a deep circular excavation. Proc. ICE Geotech. Eng. 167(2), 144–154 (2014)

    Google Scholar 

  89. Schwamb, T., Soga, K.: Numerical modelling of a deep circular excavation at Abbey Mills in London. Géotechnique 65(7), 604–619 (2015)

    Google Scholar 

  90. Schwamb, T., Elshafie, M., Soga, K., Mair, R.J.: Considerations for monitoring of deep circular excavations. Proc. Inst. Civil Eng. Geotech. Eng. 169(6), 477–493 (2016)

    Google Scholar 

  91. Soga, K., Kwan, V., Pelecanos, L., Rui, Y., Schwamb, T., Seo, H., Wilcock, M.: The role of distributed sensing in understanding the engineering performance of geotechnical structures. In: Geotechnical engineering for Infrastructure and Development, XVI ECSMGE. ICE Publishing, pp. 13–48 (2015)

    Google Scholar 

  92. Soga, K., Luo, L.: Distributed fiber optics sensors for civil engineering infrastructure sensing. J. Struct. Integrity Maintenance 3(1), 1–21 (2018)

    Google Scholar 

  93. Soga, K., Schooling, J.: Infrastructure sensing. Interface Focus, Royal Soc. Publishing 6(4), 20160023 (2016)

    Google Scholar 

  94. Sun, Z., Wang, P., Vuran, M.C., Al-Rodhaan, M.A., Al-Dhelaan, A.M., Akyildiz, I.F.: MISE-PIPE: magnetic induction-based wireless sensor networks for underground pipeline monitoring. Ad Hoc Netw. 9(3), 218–227 (2011)

    Google Scholar 

  95. Suo, W., Lu, Y., Shi, B., Zhu, H., Wei, G., Jiang, H.: Development and application of a fixed-point fiber-optic sensing cable for ground fissure monitoring. J. Civil Struct. Health Monit. 6(4), 715–724 (2016)

    Google Scholar 

  96. Stanier, S.A., Blaber, J., Take, W.A., White, D.J.: Improved image-based deformation measurement for geotechnical applications. Can. Geotech. J. 53(5), 727–739 (2016)

    Google Scholar 

  97. Stajano, F., Hoult, N., Wassell, I., Bennett, P., Middleton, C., Soga, K.: Smart bridges, smart tunnels: transforming wireless sensor networks from research prototypes into robust engineering infrastructure. Ad Hoc Netw. 8(8), 872–888 (2010)

    Google Scholar 

  98. Stent, S.: Pers. Commun. (2014)

    Google Scholar 

  99. Stent, S., Gherardi, R., Stenger, B., Soga, K., Cipolla, R.: Visual change detection on tunnel linings. Mach. Vis. Appl. 27(3), 319–330 (2016)

    Google Scholar 

  100. Take, W.A.: Thirty-sixth canadian geotechnical colloquium: advances in visualization of geotechnical processes through digital image correlation. Can. Geotech. J. 52(9), 1199–1220 (2015)

    Google Scholar 

  101. Talesnick, M.: Measuring soil pressure within a soil mass. Can. Geotech. J. 50, 716–722 (2013)

    Google Scholar 

  102. Tan, X., Sun, Z., Akyildiz, I.F.: Wireless underground sensor networks: MI-based communication systems for underground applications. IEEE Antennas Propag. Mag. 57(4), 74–87 (2015)

    Google Scholar 

  103. Tarantino, A., Ridley, A.M., Toll, D.G.: Field measurement of suction, water content, and water permeability. Geotech. Geol. Eng. 26(6), 751–782 (2008)

    Google Scholar 

  104. Teng, Y., Stanier, S.A., Gourvenec, S.M.: Synchronised multi-scale image analysis of soil deformations. Int. J. Phys. Model. Geotech. 17(1), 53–71 (2017)

    Google Scholar 

  105. Teza, G., Galgaro, A., Zaltron, N., Genevois, R.: Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int. J. Remote Sens. 28(16), 3425–3446 (2007)

    Google Scholar 

  106. Tran, T.V., Tucker-Kulesza, S.E., Bernhardt-Barry, M.L: Determining surface roughness in erosion testing using digital photogrammetry. Geotech. Test. J. 40(6), 917–927 (2017)

    Google Scholar 

  107. Tohidi, B., Anderson, R., Clennell, M.B., Burgass, R.W., Biderkab, A.B.: Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels. Geology 29(9), 867–870 (2002)

    Google Scholar 

  108. Toll, D.G., Lourenco, S.D.N., Mendes, J., Gallipoli, D., Evans, F.D., Augarde, C.E., Cui. Y.J. et al.: Soil suction monitoring for landslides and slopes. Q. J. Eng. Geol. Hydrogeol. 44(1), 23–33 (2011)

    Google Scholar 

  109. Toll, D.G., Lourenço, S.D.N., Mendes, J.: Advances in suction measurements using high suction tensiometers. Eng. Geol. 165(24), 29–37 (2013)

    Google Scholar 

  110. Uchimura, T., Towhata, I., Wang, L., Nishie, S., Yamaguchi, H., Seko, I., Qiao, J.: Precaution and early warning of surface failure of slopes using tilt sensors. Soils Found. 55(5), 1086–1099 (2015)

    Google Scholar 

  111. Viggiani, G., Andò, E., Takano, D., Santamarina, J.C.: Laboratory X-ray tomography: a valuable experimental tool for revealing processes in soils. Geotech. Test. J. 38(1), 61–71 (2015)

    Google Scholar 

  112. Vuran, M. C., Silva, A. R.: Communication through soil in wireless underground sensor networks–theory and practice. In: Sensor Networks, pp 309–347 (2010)

    Google Scholar 

  113. Vorster, T.E.B., Soga, K., Mair, R.J., Bennett, P.J., Klar, A., Choy, C.K.: The use of fibre optic sensors to monitor pipeline behaviour. ASCE Geocongr. 2006, 1–6 (2006)

    Google Scholar 

  114. Wang, M.L, Lynch, J.P., Sohn, H.: Sensor Technologies for Civil Infrastructures: Applications in Structural Health Monitoring, Woodhead Publishing Ltd. 728 pp (2014)

    Google Scholar 

  115. Wang, Y., Soga, K., DeJong, J., Kabla, A.: A microfluidic chip and its use in charterising the particle-scale behaviour of Microbial-Induced Carbonate Precipitation (MICP), Géotechnique, arXiv:1804.02946 (2018)

  116. Wasowski, J., Bovenga, F.: Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng. Geol. 174, 103–138 (2014)

    Google Scholar 

  117. Weibel, D.B., Diluzio, W.R., Whitesides, G.M.: Microfabrication meets microbiology. Nat. Rev. Microbiol. 5(3), 209–218 (2007)

    Google Scholar 

  118. White, D.J., Take, W.A., Bolton, M.D.: Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Géotechnique 53(7), 619–631 (2003)

    Google Scholar 

  119. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Google Scholar 

  120. Wu, J., Jiang, H., Su, J., Shi, B., Jiang, Y., Gu, K.: Application of distributed fiber optic sensing technique in land subsidence monitoring. J. Civil Struct. Health Monit. 5(5), 587–597 (2015)

    Google Scholar 

  121. Zhang, C.C., Zhu, H.H., Liu, S.P., Shi, B., Zhang, D.: A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements. Eng. Geol. 234(21), 83–96 (2018)

    Google Scholar 

  122. Zhao, B., Wang, J., Coop, M.R., Viggiani, G., Jiang, M.: An investigation of single sand particle fracture using X-ray micro-tomography. Géotechnique 65(8), 625–641 (2015)

    Google Scholar 

  123. Zhao, H., Ge, L., Luna, R.: Low viscosity pore fluid to manufacture transparent soil. Geotech. Test. J. 33(6), 463–468 (2010)

    Google Scholar 

Download references

Acknowledgements

The first author likes to acknowledge the Cambridge Centre of Smart Infrastructure and Construction, the University of Cambridge and the UK Engineering and Physical Sciences Research Council for their support on several sensor technologies presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Soga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soga, K., Ewais, A., Fern, J., Park, J. (2019). Advances in Geotechnical Sensors and Monitoring. In: Lu, N., Mitchell, J. (eds) Geotechnical Fundamentals for Addressing New World Challenges. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-06249-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06249-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06248-4

  • Online ISBN: 978-3-030-06249-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics