Skip to main content

The Role of Rock Mechanics in the 21st Century

  • Chapter
  • First Online:
Geotechnical Fundamentals for Addressing New World Challenges

Abstract

Rocks and rock masses pose very complex problems that must be addressed by the engineering and scientific communities if the challenges of the 21st century are to be met. New societal demands for improved infrastructure, clean water, sustainable energy, and climate change, all call for an improved understanding of the multi-physics phenomena involving rock and all require a multi-disciplinary approach. The chapter identifies five topics that, among others, limit further developments in the field or are critical to societal demands: (1) Underground construction, geology and geotechnical risks; (2) Microstructure-enriched damage and healing mechanics; (3) Damage detection inside rock; (4) Coupled processes for energy extraction; and (5) Sustainable recovery of subsurface energy resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arson, C., Xu, C., Chester, F.M.: On the definition of damage in time-dependent healing models for salt rock. Geotechnique Lett. 2(2), 67ā€“71 (2012)

    Google ScholarĀ 

  2. Arson, C.: Generalized stress variables in continuum damage mechanics. Mech. Res. Commun. 60, 81ā€“84 (2014)

    Google ScholarĀ 

  3. Arson, C., Gatmiri, B.: Thermo-hydro-mechanical modeling of damage in unsaturated porous media: theoretical framework and numerical study of the EDZ. Int. J. Numer. Anal. Meth. Geomech. 36(3), 272ā€“306 (2012)

    Google ScholarĀ 

  4. Arson, C., Pereira, J.M.: Influence of damage on pore size distribution and permeability of rocks. Int. J. Numer. Anal. Meth. Geomech. 37(8), 810ā€“831 (2013)

    Google ScholarĀ 

  5. Bahr, H., Weiss, H., Bahr, U., Hofmann, M., Fischer, G., Lampenscherf, S., Balke, H.: Scaling behavior of thermal shock crack patterns and tunneling cracks driven by cooling or drying. J. Mech. Phys. Solids 58(9), 1411ā€“1421 (2010)

    Google ScholarĀ 

  6. Balendran, B., Nasser, S.M.: Double sliding model for cyclic deformation of granular materials, including dilatancy effects. J. Mech. Phys. Solids 41(3), 573ā€“612 (1993)

    Google ScholarĀ 

  7. Bao, X., Eaton, DW.: Fault activation by hydraulic fracturing in Western Canada. Science, vol. 354 (2016)

    Google ScholarĀ 

  8. Bargellini, R., Halm, D., Dragon, A.: Modelling of anisotropic damage by microcracks: towards a discrete approach. Arch. Mech. 58(2), 93ā€“123 (2006)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. Baria, R., Baumgartner, J., Gerard, A., Jung, R., Garnish, J.: European HDR research programme at soultz-sous-forets (France) 1987ā€“1996. Geothermics 28(4ā€“5), 655ā€“669 (1999)

    Google ScholarĀ 

  10. Bazant, Z.P., Ozbolt, J.: Nonlocal microplane model for fracture, damage, and size effect in structures. J. Eng. Mech. 116(11), 2485ā€“2505 (1990)

    Google ScholarĀ 

  11. Bazant, Z.P., Jirasek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128(11), 1119ā€“1149 (2002)

    Google ScholarĀ 

  12. Bazant, Z.P., Oh, B.: Microplane model for progressive fracture of concrete and rock. J. Eng. Mech. 111(4), 559ā€“582 (1985)

    Google ScholarĀ 

  13. Blackwell, D.D., Negraru, P.T., Richards, M.C.: Assessment of the enhanced geothermal system resource base of the United States. Nat. Resour. Res. 15(4), 283ā€“308 (2006)

    Google ScholarĀ 

  14. Bourgeois, F., Burlion, N., Shao, J.: Modelling of elastoplastic damage in concrete due to desiccation shrinkage. Int. J. Numer. Anal. Meth. Geomech. 26(8), 759ā€“774 (2002)

    MATHĀ  Google ScholarĀ 

  15. Bower, K.M., Zyvoloski, G.: A numerical model for thermo-hydro-mechanical coupling in fractured rock. Int. J. Rock Mech. Min. Sci. 34(8), 1201ā€“1211 (1997)

    Google ScholarĀ 

  16. Bro, S.: Analysis of multistage triaxial test results for a strain-hardening rock. Int. J. Rock Mech. Mining Sci. 34(1), 143ā€“145 (1997)

    Google ScholarĀ 

  17. Bunger, A.P., Kear, J., Dyskin A.V., Pasternak, E.: Interpreting post-injection acoustic emission in laboratory hydraulic fracturing experiments. In: 48th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2014)

    Google ScholarĀ 

  18. Carvalho, F., Labuz, J.: Moment tensors of acoustic emissions in shear faulting under plane-strain compression. Tectonophysics 356(1ā€“3), 199ā€“211 (2002)

    Google ScholarĀ 

  19. Cauvin, A., Testa, R.B.: Damage mechanics: basic variables in continuum theories. Int. J. Solids Struct. 36(5), 747ā€“761 (1999)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. Chaboche, J.L.: Damage induced anisotropy. on the difficulties associated with the active/passive unilateral condition. Int. J. Damage Mech. 1(2), 148ā€“171 (1992)

    Google ScholarĀ 

  21. Chen, G., Kemeny, J., Harpalani, S.: Fracture propagation and coalescence in marble plates with pre-cut notches under compression. Int. J. Rock Mech. Min. Sci. & Geomech. Abstracts, 30(5), 279 (1993)

    Google ScholarĀ 

  22. Cho, S.H., Ogata, Y.J., Kaneko, K.: Strain-rate dependency of the dynamic tensile strength of rock. Int. J. Rock Mech. Min. Sci. 40(5), 763ā€“777 (2003)

    Google ScholarĀ 

  23. Choi, M., Bobet, A., Nolte, L.P.: The effect of surface roughness and mixed-mode loading on the stiffness ratio x/z for fractures. Geophysics 79(5), D319ā€“D331 (2014)

    Google ScholarĀ 

  24. Collins, I.F., Houlsby, G.T.: Application of thermo mechanical principles to the modelling of geotechnical materials. In: Proceedings of the Royal Society of London a Mathematical, Physical and Engineering Sciences, vol. 453, pp. 1975ā€“2001. The Royal Society (1997)

    Google ScholarĀ 

  25. Corson, F., Bedia, M., Henry, H., Katzav, E.: Thermal fracture as a framework for quasi-static crack propagation. Int. J. Fract. 158(1), 1ā€“14 (2009)

    MATHĀ  Google ScholarĀ 

  26. Cowin, S.C.: The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4(2), 137ā€“147 (1985)

    Google ScholarĀ 

  27. de Borst, R., Pamin, J., Geers, M.D.: On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. Euro. J. Mech.-A/Solids 18(6), 939ā€“962 (1999)

    MATHĀ  Google ScholarĀ 

  28. Detournay, E., Garagash, D.: The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid. J. Fluid Mech. 494, 1ā€“32 (2003)

    MATHĀ  Google ScholarĀ 

  29. Dezayes, C., Genter, A., Thinon, I., Courrioux, G., Tourliere, B.: Geothermal potential assessment of clastic triassic reservoirs (Upper Rhine Graben, France). In: 32nd Workshop on Geothermal Reservoir Engineering, pp. 28ā€“30 (2008)

    Google ScholarĀ 

  30. Diederichs, M.S., Kaiser, P.K., Eberhardt, E.: Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int. J. Rock Mech. Min. Sci. 41(5), 785ā€“812 (2004)

    Google ScholarĀ 

  31. Dormieux, L., Kondo, D.: Approche micromecanique du couplage permeabilite-endommagement. C.R. Mec. 332(2), 135ā€“140 (2004)

    MATHĀ  Google ScholarĀ 

  32. Dyskin, A.V., Germanovich, L.N., Ustinov, K.B.: A 3-D model of wing crack growth and interaction. Eng. Fract. Mech. 63(1), 81ā€“110 (1999)

    Google ScholarĀ 

  33. Elsworth, D., Spiers, C.J., Niemeijer, A.R.: Understanding induced seismicity. Science 354(6318), 1380ā€“1381 (2016)

    Google ScholarĀ 

  34. Fang, Y., Elsworth, D., Cladouhos, T.J.: Reservoir permeability mapping using microearthquake data. Geothermics 72, 83ā€“100 (2018)

    Google ScholarĀ 

  35. Fang, Z., Harrison, J.P.: Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions. Int. J. Rock Mech. Min. Sci. 39(4), 459ā€“476 (2002)

    Google ScholarĀ 

  36. Fuenkajorn, K., Phueakphum, D.: Laboratory assessment of healing of fractures in rock salt. Bull. Eng. Geol. Env. 70(4), 665 (2011)

    Google ScholarĀ 

  37. Gan, Q., Elsworth, D.: Analysis of fluid injection-induced fault reactivation and seismic slip in geothermal reservoirs. J. Geophys. Res. Solid Earth 119(4), 3340ā€“3353 (2014)

    Google ScholarĀ 

  38. Gelet, R., Loret, B., Khalili, N.: A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity. J. Geophys. Res. Solid Earth, 117(B7) (2012)

    Google ScholarĀ 

  39. Genter, A., Evans, K., Cuenot, N., Fritsch, D., Sanjuan, B.: Contribution of the exploration of deep crystalline fractured reservoir of soultz to the knowledge of enhanced geothermal systems (EGS). Comptes Rendus Geosci. 342(7ā€“8), 502ā€“516 (2010)

    Google ScholarĀ 

  40. Germain, P.: La methode des puissances virtuelles en mecanique des milieux continus. PremiĆØre partie: thĆ©orie du second gradient. J. Mecanique 12, 235ā€“274 (1973)

    MATHĀ  Google ScholarĀ 

  41. Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25(3), 556ā€“575 (1973)

    Google ScholarĀ 

  42. Germanovich, L.N., Carter, B.J., Ingraea, A.R., Dyskin, A.V., Lee, K.K.: Mechanics of 3-D crack growth under compressive loads. In: Rock Mechanics Tools and Techniques. Proceedings of the Second North American Rock Mechanics Symposium: NARMS, vol. 96, pp. 1151ā€“1160 (1996)

    Google ScholarĀ 

  43. Ghassemi, A., Tarasovs, S., Cheng, A.H.: Integral equation solution of heat extraction-induced thermal stress in enhanced geothermal reservoirs. Int. J. Numer. Anal. Meth. Geomech. 29(8), 829ā€“844 (2005)

    MATHĀ  Google ScholarĀ 

  44. Ghassemi, A., Nygren, A., Cheng, A.: Effects of heat extraction on fracture aperture: a poro-thermoelastic analysis. Geothermics 37(5), 525ā€“539 (2008)

    Google ScholarĀ 

  45. Goertz, B.P., Goertz, A., Wiemer, S.: Stress drop variations of induced earthquakes at the basel geothermal site. Geophys. Res. Lett. 38(9) (2011)

    Google ScholarĀ 

  46. Goodfellow, S.D., Nasseri, M.B.H., Young, R.P.: Source parameters of acoustic emission observed in laboratory and mine environments. In: 48th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2014)

    Google ScholarĀ 

  47. Gueguen, Y., Dienes, E.: Transport properties of rocks from statistics and percolation. Math. Geol. 21(1), 1ā€“13 (1989)

    Google ScholarĀ 

  48. Guglielmi, Y., Cappa, F., Avouac, J.P., Henry, P., Elsworth, D.: Seismicity triggered by fluid injection-induced aseismic slip. Science 348(6240), 1224ā€“1226 (2015)

    Google ScholarĀ 

  49. Halm, D., Dragon, A.: An anisotropic model of damage and frictional sliding for brittle materials. Euro. J. Mech.-A/Solids 17(3), 439ā€“460 (1998)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  50. Hampton, J.C., Hu, D., Matzar, L., Gutierrez, M.: Cumulative volumetric deformation of a hydraulic fracture using acoustic emission and micro-CT imaging. In: 48th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2014)

    Google ScholarĀ 

  51. Hedayat, A., Pyrak, L., Bobet, A.: Multi-modal monitoring of slip along frictional discontinuities. Rock Mech. Rock Eng. 47(5), 1575ā€“1587 (2014)

    Google ScholarĀ 

  52. Hedayat, A., Pyrak, L., Bobet, A.: Precursors to the shear failure of rock discontinuities. Geophys. Res. Lett. 41(15), 5467ā€“5475 (2014)

    Google ScholarĀ 

  53. Heuze, F.E.: High-temperature mechanical, physical and thermal properties of granitic rocksa re-view. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, vol. 20, pp. 3ā€“10. Elsevier (1983)

    Google ScholarĀ 

  54. Hicks, T.W., Pine, R.J., Willis, J., Xu, S., Jupe, A.J., Rodrigues, N.E.V.: A hydro-thermo-mechanical numerical model for hdr geothermal reservoir evaluation. In: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, vol. 33, pp. 499ā€“511. Elsevier (1996)

    Google ScholarĀ 

  55. Hoeppe, P.: Trends in weather related disastersā€”consequences for insurers and society. Weather Clim. Extremes 11, 70ā€“79 (2016)

    Google ScholarĀ 

  56. Hou, Z.: Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int. J. Rock Mech. Min. Sci. 40(5), 725ā€“738 (2003)

    Google ScholarĀ 

  57. Houben, M.E., Hove, A., Peach, C.J., Spiers, C.J.: Crack healing in rocksalt via diffusion in adsorbed aqueous films: microphysical modelling versus experiments. Phys. Chem. Earth Parts A/B/C 64, 95ā€“104 (2013)

    Google ScholarĀ 

  58. Huang, S., Liu, J.: Geothermal energy stuck between a rock and a hot place. Nature 463(7279), 293 (2010)

    Google ScholarĀ 

  59. Izadi, G., Elsworth, D.: The effects of thermal stress and fluid pressure on induced seismicity during stimulation to production within fractured reservoirs. Terra. Nova 25(5), 374ā€“380 (2013)

    Google ScholarĀ 

  60. Jin, W., Xu, H., Arson, C., Busetti, S.: A multi-scale computation tool coupling mode II fracture propagation and damage zone evolution. Inter. J. Numer. Anal. Met. Geomech. 41, 223ā€“250 (2017)

    Google ScholarĀ 

  61. Kachanov, M.: Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev. 45(8), 304ā€“335 (1992)

    Google ScholarĀ 

  62. Kaproth, B.M., Marone, C.: Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-slip. Science 341(6151), 1229ā€“1232 (2013)

    Google ScholarĀ 

  63. Kim, S., Hosseini, S.A.: Hydro-thermo-mechanical analysis during injection of cold fluid into a geologic formation. Int. J. Rock Mech. Min. Sci. 77, 220ā€“236 (2015)

    Google ScholarĀ 

  64. Kohl, T., Evansi, K.F., Hopkirk, R.J., Rybach, L.: Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs. Geothermics 24(3), 345ā€“359 (1995)

    Google ScholarĀ 

  65. Krajcinovic, D.: Damage mechanics, vol. 41. Elsevier (1996)

    Google ScholarĀ 

  66. Kranz, R.L.: Crack-crack and crack-pore interactions in stressed granite. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, vol. 16, pp. 37ā€“47. Elsevier (1979)

    Google ScholarĀ 

  67. Kranz, R.L.: Microcracks in rocks: a review. Tectonophysics 100(1ā€“3), 449ā€“480 (1983)

    Google ScholarĀ 

  68. Lemaitre, J., Desmorat, R.: Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer Science and Business Media (2005)

    Google ScholarĀ 

  69. Levasseur, S., Collin, F., Charlier, R., Kondo, D.: On micromechanical damage modeling in geomechanics: influence of numerical integration scheme. J. Comput. Appl. Math. 246, 215ā€“224 (2013)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  70. Lin, Q., Yuan, H., Biolzi, L., Labuz, J.K.: Opening and mixed mode fracture processes in a quasi-brittle material via digital imaging. Eng. Fract. Mech. 131, 176ā€“193 (2014)

    Google ScholarĀ 

  71. Lin, W., Yeh, E., Hung, J., Haimson, B., Hirono, T.: Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelungpu-fault drilling project (TCDP). Tectonophysics 482(1ā€“4), 82ā€“91 (2010)

    Google ScholarĀ 

  72. Lubarda, V.A., Krajcinovic, D.: Damage tensors and the crack density distribution. Int. J. Solids Struct. 30(20), 2859ā€“2877 (1993)

    MATHĀ  Google ScholarĀ 

  73. Lutz, S.J., Hickman, S., Davatzes, N., Zemach, E., Drakos, P., Robertson, A.: Rock mechanical testing and petrologic analysis in support of well stimulation activities at the desert peak geothermal field, Nevada. In: Proceedings 35th Workshop on Geothermal Reservoir Engineering (2010)

    Google ScholarĀ 

  74. Makhnenko, R.Y., Ge, C., Labuz, J.F.: AE from undrained and unjacketed tests on sandstone. In: 46th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2012)

    Google ScholarĀ 

  75. Maleki, K., Pouya, A.: Numerical simulation of damage-permeability relationship in brittle geomaterials. Comput. Geotech. 37, 619ā€“628 (2010)

    Google ScholarĀ 

  76. Masson, R., Bornert, M., Suquet, P., Zaoui, A.: An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J. Mech. Phys. Solids 48(6ā€“7), 1203ā€“1227 (2000)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  77. McCartney, J.S., Sanchez, M., Tomac, I.: Energy geotechnics: advances in subsurface energy recovery, storage, exchange, and waste management. Comput. Geotech. 75, 244ā€“256 (2016)

    Google ScholarĀ 

  78. McDermott, C.I., Randriamanjatosoa, A.R., Tenzer, H., Kolditz, O.: Simulation of heat extraction from crystalline rocks: the influence of coupled processes on differential reservoir cooling. Geothermics 35(3), 321ā€“344 (2006)

    Google ScholarĀ 

  79. Miao, S., Wang, M., Schreyer, H.L.: Constitutive models for healing of materials with application to compaction of crushed rock salt. J. Eng. Mech. 121(10), 1122ā€“1129 (1995)

    Google ScholarĀ 

  80. Mirkhani, H., Joshi, S.P.: Mechanism-based crystal plasticity modeling of twin boundary migration in nanotwinned face-centered-cubic metals. J. Mech. Phys. Solids 68, 107ā€“133 (2014)

    Google ScholarĀ 

  81. Modiriasari, A., Bobet, A., Pyrak, L.J.: Monitoring of mechanically-induced damage in rock using transmission and reflection of elastic waves. In: 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2015)

    Google ScholarĀ 

  82. Modiriasari, A., Bobet, A., Pyrak-Nolte, L.J.: Active seismic monitoring of crack initiation, propagation, and coalescence in rock. Rock Mech. Rock Eng. 50(9), 2311ā€“2325 (2017)

    Google ScholarĀ 

  83. Moradian, Z., Einstein, H.H.: Monitoring cracking process of gypsum by means of acoustic emission and high-speed camera imaging. In: 48th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2014)

    Google ScholarĀ 

  84. Nelson, P.P.: A framework for the future of urban underground engineering. Tunneling Underground Space Technol. 55, 32ā€“39 (2016)

    Google ScholarĀ 

  85. Oda, M.: Similarity rule of crack geometry in statistically homogeneous rock masses. Mech. Mater. 3(2), 119ā€“129 (1984)

    Google ScholarĀ 

  86. Ojala, I.O., Ngwenya, B., Main, I.G.: Loading rate dependence of permeability evolution in porous aeolian sandstones. J. Geophys. Res. Solid Earth 109(B1), 2156ā€“2202 (2004)

    Google ScholarĀ 

  87. Ortiz, M.: A constitutive theory for the inelastic behavior of concrete. Mech. Mater. 4(1), 67ā€“93 (1985)

    Google ScholarĀ 

  88. Peng, Z., Gomberg, J.: An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 3(9), 599ā€“607 (2010)

    Google ScholarĀ 

  89. Pouya, A., Zhu, C., Arson, C.: Micro-macro approach of salt viscous fatigue under cyclic loading. Mech. Mater. 93, 13ā€“31 (2016)

    Google ScholarĀ 

  90. Pyrak, N., Myer, L., Cook, N.: Transmission of seismic waves across single natural fractures. J. Geophys. Res. Solid Earth 95(B6), 8617ā€“8638 (1990)

    Google ScholarĀ 

  91. Zhu, Q., Kondo, D., Shao, J.-F.: An homogenization-based nonlocal damage model for brittle materials and applications. ICCS 2007, Part III, LNCS 4489, Springer-Verlag, Shi (eds), 42, 1130ā€“1137 (2007)

    Google ScholarĀ 

  92. Romero E, Gens A, loret A.: Water permeability, water retention and microstructure of unsaturated compacted boom clay. Eng. Geology 54(1ā€“2):117ā€“127 (1999)

    Google ScholarĀ 

  93. Saar, M.O., Manga, M.: Permeability-porosity relationship in vesicular basalts. Geo-phys. Res. Lett. 26(1), 111ā€“114 (1999)

    Google ScholarĀ 

  94. Schubnel, A., Benson, P.M., Thompson, B.D., Hazzard, J.F., Young, Y.P.: Quantifying damage, saturation and anisotropy in cracked rocks by inverting elastic wave velocities. In: Rock Damage and Fluid Transport, Part I, pp. 947ā€“973. Springer (2006)

    Google ScholarĀ 

  95. Selvadurai, P.A., Glaser, S.D.: Direct measurement of contact area and seismic stress along a sliding interface. In: 46th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2012)

    Google ScholarĀ 

  96. Selvadurai, P.A., Glaser, S.D.: Experimental evidence of micromechanical processes that control localization of shear rupture nucleation. In: 47th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2013)

    Google ScholarĀ 

  97. Selvadurai, P.A., Glaser, S.D.: Insights into dynamic asperity failure in the laboratory. In: 48th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2014)

    Google ScholarĀ 

  98. Senseny, P.E., Hansen, F.D., Russell JE, Carter NL, Handin JW.: Mechanical behavior of rock salt: phenomenology and micromechanisms. In: International Journal of Rock Mechanics and Mining Sciences and geomechanics abstracts, vol. 29, pp. 363ā€“378. Elsevier (1992)

    Google ScholarĀ 

  99. Shapiro, S.A., Dinske, C.: Fluidā€induced seismicity: Pressure diffusion and hydraulic fracturing. Geophys. Prospect. 57(2), 301ā€“310 (2009)

    Google ScholarĀ 

  100. Shen, X., Arson, C., Ding, J., Chester, F., Chester, J.: Experimental characterization of microstructure development for calculating fabric and sti ness tensors in salt rock. In: 51st US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2017)

    Google ScholarĀ 

  101. Singurindy, O., Berkowitz, B.: Competition among flow, dissolution, and precipitation in fractured carbonate rocks. Dyn. Fluids Fractured Rock, 81, 1177ā€“1185 (2004)

    Google ScholarĀ 

  102. Spiers, C.J., Schutjens, P.M.T.M., Brzesowsky, R.H., Peach, C.J., Liezenberg, J.L., Zwart, H.J.: Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. Geological Soc. London, Special Publications 54(1), 215ā€“227 (1990)

    Google ScholarĀ 

  103. Satuffer, D., Aharony, A.: Introduction to percolation theory: revised second edition. CRC press (2014)

    Google ScholarĀ 

  104. Stesky, R.M.: Acoustic emission during high-temperature frictional sliding. Pure. appl. Geophys. 113(1), 31ā€“43 (1975)

    Google ScholarĀ 

  105. Tester, J.W., Anderson, B.J., Batchelor, A.S., Blackwell, D.B., DiPippo, R., Drake, E., Garnish, J., Livesay, B., Moore, M.C., Nichols, K.: The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the united states in the 21st century. Massachusetts Inst. Technol. 209 (2006)

    Google ScholarĀ 

  106. Tomac, I., Gutierrez, M.: Formulation and implementation of coupled forced heat convection and heat conduction in dem. Acta Geotech. 10(4), 421ā€“433 (2015)

    Google ScholarĀ 

  107. Tomac, I., Gutierrez, M.: Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM. J. Rock Mech. Geotech. Eng. 9(1), 92ā€“104 (2017)

    Google ScholarĀ 

  108. Turcote, D.L., Shcherbakov, R.: Can damage mechanics explain temporal scaling laws in brittle fracture and seismicity? In: Rock Damage and Fluid Transport, Part I, pp. 1031ā€“1045. Springer (2006)

    Google ScholarĀ 

  109. Tyler, S.W., Wheatcraft, S.W.: Fractal processes in soil water retention. Water Resour. Res. 26, 1047ā€“1054 (1990)

    Google ScholarĀ 

  110. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci. Soc. Am. J. 44(5), 892ā€“898 (1980)

    Google ScholarĀ 

  111. Vandamme, M., Brochard, L., Lecampion, B., Coussy, O.: Adsorption and strain: the CO2-induced swelling of coal. J. Mech. Phys. Solids 58(10), 1489ā€“1505 (2010)

    MATHĀ  Google ScholarĀ 

  112. Wang, S., Elsworth, D., Liu, J.: Rapid decompression and desorption induced energetic failure in coal. J. Rock Mech. Geotech. Eng. 7(3), 345ā€“350 (2015)

    Google ScholarĀ 

  113. Westman, E.C., Luxbacher, K.D., Schafrik, S.J., Swanson, P.J., Zhang, H.: Time-lapse passive seismic velocity tomography of longwall coal mines: a comparison of methods. In: 46th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2012)

    Google ScholarĀ 

  114. Wiederhorn, S.M., Townsend, P.R.: Crack healing in glass. J. Am. Ceram. Soc. 53(9), 486ā€“489 (1970)

    Google ScholarĀ 

  115. Wool, R.P.: Self-healing materials: a review. Soft Matter 4(3), 400ā€“418 (2008)

    Google ScholarĀ 

  116. Xu, H., Arson, C.: Anisotropic damage models for geomaterials: theoretical and numerical challenges. Int. J. Comput. Methods 11(02), 1342007 (2014)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  117. Young, R.P., Thompson, B.D.: Imaging dynamic rock fracture with acoustic emission and x-ray tomography. In: Proceedings of the 11th Congress of International Society for Rock Mechanics (2007)

    Google ScholarĀ 

  118. Zhao, J., Sheng, D., Zhou, W.: Shear banding analysis of geomaterials by strain gradient enhanced damage model. Int. J. Solids Struct. 42(20), 5335ā€“5355 (2005)

    MATHĀ  Google ScholarĀ 

  119. Zhu, C., Arson, C.: A model of damage and healing coupling halite thermo-mechanical behavior to microstructure evolution. Geotech. Geol. Eng. 33(2), 389ā€“410 (2015)

    Google ScholarĀ 

  120. Zoback, M.D., Moos, D., Mastin, L., Anderson, R.N.: Well bore breakouts and in situ stress. J. Geophys. Res. Solid Earth 90(B7), 5523ā€“5530 (1985)

    Google ScholarĀ 

  121. Zysset, P.K., Curnier, A.: An alternative model for anisotropic elasticity based on fabric tensors. Mech. Mater. 21(4), 243ā€“250 (1995)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bobet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bobet, A., Arson, C.F., Elsworth, D., Nelson, P., Tomac, I., Modiriasari, A. (2019). The Role of Rock Mechanics in the 21st Century. In: Lu, N., Mitchell, J. (eds) Geotechnical Fundamentals for Addressing New World Challenges. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-06249-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06249-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06248-4

  • Online ISBN: 978-3-030-06249-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics