A Nonlocal Mean Curvature Flow

  • José M. Mazón
  • Julio Daniel Rossi
  • J. Julián Toledo
Part of the Frontiers in Mathematics book series (FM)


Consider a family { Γt}t≥0 of hypersurfaces embedded in \(\mathbb {R}^N\) parametrized by time t. Assume that each Γt = ∂Et, the boundary of a bounded open set Et in \(\mathbb {R}^N\).


  1. 32.
    A. Chambolle, M. Morini, M. Ponsiglione, Nonlocal curvature flows. Arch. Ration. Mech. Anal. 218, 1263–1329 (2015)MathSciNetCrossRefGoogle Scholar
  2. 45.
    A. Figalli, N. Fusco, F. Maggi, V. Millot, M. Morini, Isoperimetric and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336, 441–507 (2015)CrossRefGoogle Scholar
  3. 65.
    M. Saez, E. Valdinoci, On the evolution by fractional mean curvature. arXiv: 1511.06944v2Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José M. Mazón
    • 1
  • Julio Daniel Rossi
    • 2
  • J. Julián Toledo
    • 3
  1. 1.Departamento de Análisis MatemáticoUniversitat de ValènciaValenciaSpain
  2. 2.Departamento de MatemáticasUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Departamento de Análisis MatemáticoUniversitat de ValènciaValènciaSpain

Personalised recommendations