Nonlocal Heat Content

  • José M. Mazón
  • Julio Daniel Rossi
  • J. Julián Toledo
Part of the Frontiers in Mathematics book series (FM)


The heat content of a Borel measurable set \(D \subset \mathbb {R}^N\) at time t is defined by M. van der Berg in [69] (see also [70]) as:
$$\displaystyle \mathbb {H}_D(t) = \int _D T(t) {\chi }_D (x) dx, $$
with (T(t))t≥0 being the heat semigroup in \(L^2(\mathbb {R}^N)\). Therefore, the heat content represents the amount of heat in D at time t if in D the initial temperature is 1 and in \(\mathbb {R}^N \setminus D\) the initial temperature is 0.


  1. 2.
    L. Acuña Valverde, Heat content estimates over sets of finite perimeter. J. Math. Anal. Appl. 441, 104–120 (2016)MathSciNetCrossRefGoogle Scholar
  2. 3.
    L. Acuña Valverde, Heat content for stable processes in domains of \(\mathbb {R}^d\). J. Geom. Anal. 27, 492–524 (2017)Google Scholar
  3. 12.
    F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi, J. Toledo, Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165 (American Mathematical Society, Providence, 2010)Google Scholar
  4. 15.
    A. Baernstein, Integral means, univalent functions and circular symmetrization. Acta Math. 133, 139–169 (1974)MathSciNetCrossRefGoogle Scholar
  5. 35.
    W. Cygan, T. Grzywny, Heat content for convolution semigroups. J. Math. Anal. Appl. 446, 1393–1414 (2017)MathSciNetCrossRefGoogle Scholar
  6. 44.
    W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. (Wiley, New York, 1971), pp. xxiv+669Google Scholar
  7. 55.
    M. Ledoux, Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space. Bull. Sci. Math. 118, 485–510 (1994)MathSciNetzbMATHGoogle Scholar
  8. 61.
    M. Miranda Jr., D. Pallara, F. Paronetto, M. Preunkert, Short-time heat flow and functions of bounded variation in \(\mathbb {R}^N\). Ann. Fac. Sci. Toulouse 16, 125–145 (2007)Google Scholar
  9. 64.
    M. Preunkert, A Semigroup version of the isoperimetric inequality. Semigroup Forum 68, 233–245 (2004)MathSciNetCrossRefGoogle Scholar
  10. 69.
    M. van der Berg, Heat flow and perimeter in \(\mathbb {R}^m\). Potential Anal. 39, 369–387 (2013)MathSciNetCrossRefGoogle Scholar
  11. 70.
    M. van der Berg, K. Gitting, Uniform bounds for the heat content of open set in Euclidean spaces. Diff. Geom. Appl. 40, 67–85 (2015)MathSciNetCrossRefGoogle Scholar
  12. 71.
    M. van der Berg, J.F. Le Gall, Mean curvature and the heat equation. Math. Z. 215, 437–464 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José M. Mazón
    • 1
  • Julio Daniel Rossi
    • 2
  • J. Julián Toledo
    • 3
  1. 1.Departamento de Análisis MatemáticoUniversitat de ValènciaValenciaSpain
  2. 2.Departamento de MatemáticasUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Departamento de Análisis MatemáticoUniversitat de ValènciaValènciaSpain

Personalised recommendations